tft.scale_to_0_1_per_key
Stay organized with collections
Save and categorize content based on your preferences.
Returns a column which is the input column scaled to have range [0,1].
tft.scale_to_0_1_per_key(
x: common_types.ConsistentTensorType,
key: common_types.TensorType,
elementwise: bool = False,
key_vocabulary_filename: Optional[str] = None,
name: Optional[str] = None
) -> common_types.ConsistentTensorType
Args |
x
|
A numeric Tensor , SparseTensor , or RaggedTensor .
|
key
|
A Tensor , SparseTensor , or RaggedTensor of type string.
|
elementwise
|
If true, scale each element of the tensor independently.
|
key_vocabulary_filename
|
(Optional) The file name for the per-key file. If
None, this combiner will assume the keys fit in memory and will not store
the analyzer result in a file. If '', a file name will be chosen based on
the current TensorFlow scope. If not '', it should be unique within a
given preprocessing function.
|
name
|
(Optional) A name for this operation.
|
Example:
def preprocessing_fn(inputs):
return {
'scaled': tft.scale_to_0_1_per_key(inputs['x'], inputs['s'])
}
raw_data = [dict(x=1, s='a'), dict(x=0, s='b'), dict(x=3, s='a')]
feature_spec = dict(
x=tf.io.FixedLenFeature([], tf.float32),
s=tf.io.FixedLenFeature([], tf.string))
raw_data_metadata = tft.DatasetMetadata.from_feature_spec(feature_spec)
with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
transformed_dataset, transform_fn = (
(raw_data, raw_data_metadata)
| tft_beam.AnalyzeAndTransformDataset(preprocessing_fn))
transformed_data, transformed_metadata = transformed_dataset
transformed_data
[{'scaled': 0.0}, {'scaled': 0.5}, {'scaled': 1.0}]
Returns |
A Tensor , SparseTensor , or RaggedTensor containing the input column scaled to [0, 1],
per key. If the analysis dataset is empty, contains a single distinct value
or the computed key vocabulary doesn't have an entry for key , then x is
scaled using a sigmoid function.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-11-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-11-01 UTC."],[],[]]