View source on GitHub |
Sets the domain for the input feature in the schema.
tfdv.set_domain(
schema: schema_pb2.Schema,
feature_path: tfdv.FeaturePath
,
domain: Any
) -> None
If the input feature already has a domain, it is overwritten with the newly provided input domain. This method cannot be used to add a new global domain.
Example: ```python >>> from tensorflow_metadata.proto.v0 import schema_pb2
```
>>> import tensorflow_data_validation as tfdv >>> schema =
schema_pb2.Schema() >>> schema.feature.add(name='feature') # Setting a int
domain. >>> int_domain = schema_pb2.IntDomain(min=3, max=5) >>>
tfdv.set_domain(schema, "feature", int_domain) # Setting a string domain.
>>> str_domain = schema_pb2.StringDomain(value=['one', 'two', 'three']) >>>
tfdv.set_domain(schema, "feature", str_domain) ```
<!-- Tabular view -->
<table class="responsive fixed orange">
<colgroup><col width="214px"><col></colgroup>
<tr><th colspan="2"><h2 class="add-link">Raises</h2></th></tr>
<tr>
<td>
`TypeError`<a id="TypeError"></a>
</td>
<td>
If the input schema or the domain is not of the expected type.
</td>
</tr><tr>
<td>
`ValueError`<a id="ValueError"></a>
</td>
<td>
If an invalid global string domain is provided as input.
</td>
</tr>
</table>