View source on GitHub |
Calculates the mean of squared logarithmic error.
Inherits From: Metric
tfma.metrics.MeanSquaredLogarithmicError(
name: str = MEAN_SQUARED_LOGARITHMIC_ERROR_NAME
)
Formula: error = L2_norm(log(label + 1) - log(prediction + 1))**2 Note: log of an array will be elementwise, i.e. log([x1, x2]) = [log(x1), log(x2)]
The metric computes the mean of squared logarithmic error (square of L2 norm) between labels and predictions. The labels and predictions could be arrays of arbitrary dimensions. Their dimension should match.
Args | |
---|---|
name
|
The name of the metric. |
Methods
computations
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
@classmethod
from_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any]
Returns serializable config.