View source on GitHub |
Coefficient of discrimination metric.
Inherits From: Metric
tfma.metrics.CoefficientOfDiscrimination(
name: str = COEFFICIENT_OF_DISCRIMINATION_NAME
)
The coefficient of discrimination measures the differences between the average prediction for the positive examples and the average prediction for the negative examples.
The formula is: AVG(pred | label = 1) - AVG(pred | label = 0) More details can be found in the following paper: https://www.tandfonline.com/doi/abs/10.1198/tast.2009.08210
Args | |
---|---|
name
|
Metric name. |
Methods
computations
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
@classmethod
from_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any]
Returns serializable config.