Returns specs for tf_keras.metrics/losses or tfma.metrics classes.
tfma.metrics.specs_from_metrics(
metrics: Optional[_MetricsOrLosses] = None,
unweighted_metrics: Optional[_MetricsOrLosses] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
output_weights: Optional[Dict[str, float]] = None,
binarize: Optional[tfma.BinarizationOptions
] = None,
aggregate: Optional[tfma.AggregationOptions
] = None,
query_key: Optional[str] = None,
include_example_count: Optional[bool] = None,
include_weighted_example_count: Optional[bool] = None
) -> List[tfma.MetricsSpec
]
Examples |
metrics_specs = specs_from_metrics(
[
tf_keras.metrics.BinaryAccuracy(),
tfma.metrics.AUC(),
tfma.metrics.MeanLabel(),
tfma.metrics.MeanPrediction()
...
],
unweighted=[
tfma.metrics.Precision(),
tfma.metrics.Recall()
])
metrics_specs = specs_from_metrics({
'output1': [
tf_keras.metrics.BinaryAccuracy(),
tfma.metrics.AUC(),
tfma.metrics.MeanLabel(),
tfma.metrics.MeanPrediction()
...
],
'output2': [
tfma.metrics.Precision(),
tfma.metrics.Recall(),
]
})
|
Args |
metrics
|
List of tfma.metrics.Metric, tf_keras.metrics.Metric, or
tf_keras.losses.Loss. For multi-output models a dict of dicts may be
passed where the first dict is indexed by the output_name. Whether these
metrics are weighted or not will be determined based on whether the
ModelSpec associated with the metrics contains example weight key settings
or not.
|
unweighted_metrics
|
Same as metrics only these metrics will not be weighted
by example_weight regardless of the example weight key settings.
|
model_names
|
Optional model names (if multi-model evaluation).
|
output_names
|
Optional output names (if multi-output models). If the metrics
are a dict this should not be set.
|
output_weights
|
Optional output weights for creating overall metric
aggregated across outputs (if multi-output model). If a weight is not
provided for an output, it's weight defaults to 0.0 (i.e. output ignored).
|
binarize
|
Optional settings for binarizing multi-class/multi-label metrics.
|
aggregate
|
Optional settings for aggregating multi-class/multi-label
metrics.
|
query_key
|
Optional query key for query/ranking based metrics.
|
include_example_count
|
True to add example_count metric. Default is True.
|
include_weighted_example_count
|
True to add weighted example_count metric.
Default is True. A weighted example count will be added per output for
multi-output models.
|
Returns |
MetricsSpecs based on options provided. A separate spec is returned for
weighted vs unweighted metrics. A separate spec is also returned for each
output if a dict of metrics per output is passed.
|