tf.keras.optimizers.schedules.InverseTimeDecay
Stay organized with collections
Save and categorize content based on your preferences.
A LearningRateSchedule that uses an inverse time decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.InverseTimeDecay(
initial_learning_rate, decay_steps, decay_rate, staircase=False, name=None
)
When training a model, it is often useful to lower the learning rate as
the training progresses. This schedule applies the inverse decay function
to an optimizer step, given a provided initial learning rate.
It requires a step
value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
It is computed as:
def decayed_learning_rate(step):
return initial_learning_rate / (1 + decay_rate * step / decay_step)
or, if staircase
is True
, as:
def decayed_learning_rate(step):
return initial_learning_rate / (1 + decay_rate * floor(step / decay_step))
You can pass this schedule directly into a tf.keras.optimizers.Optimizer
as the learning rate.
Example: Fit a Keras model when decaying 1/t with a rate of 0.5:
...
initial_learning_rate = 0.1
decay_steps = 1.0
decay_rate = 0.5
learning_rate_fn = keras.optimizers.schedules.InverseTimeDecay(
initial_learning_rate, decay_steps, decay_rate)
model.compile(optimizer=tf.keras.optimizers.SGD(
learning_rate=learning_rate_fn),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels, epochs=5)
Returns |
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar Tensor of the same
type as initial_learning_rate .
|
Args |
initial_learning_rate
|
A scalar float32 or float64 Tensor or a
Python number. The initial learning rate.
|
decay_steps
|
How often to apply decay.
|
decay_rate
|
A Python number. The decay rate.
|
staircase
|
Whether to apply decay in a discrete staircase, as opposed
to continuous, fashion.
|
name
|
String. Optional name of the operation. Defaults to
'InverseTimeDecay'.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule
from its config.
Args |
config
|
Output of get_config() .
|
Returns |
A LearningRateSchedule instance.
|
get_config
View source
get_config()
__call__
View source
__call__(
step
)
Call self as a function.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.optimizers.schedules.InverseTimeDecay\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L470-L575) |\n\nA LearningRateSchedule that uses an inverse time decay schedule.\n\nInherits From: [`LearningRateSchedule`](../../../../tf/keras/optimizers/schedules/LearningRateSchedule)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.optimizers.schedules.InverseTimeDecay`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/InverseTimeDecay)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.optimizers.schedules.InverseTimeDecay\\`\n\n\u003cbr /\u003e\n\n tf.keras.optimizers.schedules.InverseTimeDecay(\n initial_learning_rate, decay_steps, decay_rate, staircase=False, name=None\n )\n\nWhen training a model, it is often useful to lower the learning rate as\nthe training progresses. This schedule applies the inverse decay function\nto an optimizer step, given a provided initial learning rate.\nIt requires a `step` value to compute the decayed learning rate. You can\njust pass a TensorFlow variable that you increment at each training step.\n\nThe schedule is a 1-arg callable that produces a decayed learning\nrate when passed the current optimizer step. This can be useful for changing\nthe learning rate value across different invocations of optimizer functions.\nIt is computed as: \n\n def decayed_learning_rate(step):\n return initial_learning_rate / (1 + decay_rate * step / decay_step)\n\nor, if `staircase` is `True`, as: \n\n def decayed_learning_rate(step):\n return initial_learning_rate / (1 + decay_rate * floor(step / decay_step))\n\nYou can pass this schedule directly into a [`tf.keras.optimizers.Optimizer`](../../../../tf/keras/optimizers/Optimizer)\nas the learning rate.\nExample: Fit a Keras model when decaying 1/t with a rate of 0.5: \n\n ...\n initial_learning_rate = 0.1\n decay_steps = 1.0\n decay_rate = 0.5\n learning_rate_fn = keras.optimizers.schedules.InverseTimeDecay(\n initial_learning_rate, decay_steps, decay_rate)\n\n model.compile(optimizer=tf.keras.optimizers.SGD(\n learning_rate=learning_rate_fn),\n loss='sparse_categorical_crossentropy',\n metrics=['accuracy'])\n\n model.fit(data, labels, epochs=5)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A 1-arg callable learning rate schedule that takes the current optimizer step and outputs the decayed learning rate, a scalar `Tensor` of the same type as `initial_learning_rate`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|-----------------------------------------------------------------------------------------|\n| `initial_learning_rate` | A scalar `float32` or `float64` `Tensor` or a Python number. The initial learning rate. |\n| `decay_steps` | How often to apply decay. |\n| `decay_rate` | A Python number. The decay rate. |\n| `staircase` | Whether to apply decay in a discrete staircase, as opposed to continuous, fashion. |\n| `name` | String. Optional name of the operation. Defaults to 'InverseTimeDecay'. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L88-L98) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `LearningRateSchedule` from its config.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `LearningRateSchedule` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L568-L575) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L551-L566) \n\n __call__(\n step\n )\n\nCall self as a function."]]