tf.keras.optimizers.schedules.CosineDecayRestarts
Stay organized with collections
Save and categorize content based on your preferences.
A LearningRateSchedule that uses a cosine decay schedule with restarts.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.CosineDecayRestarts(
initial_learning_rate,
first_decay_steps,
t_mul=2.0,
m_mul=1.0,
alpha=0.0,
name=None
)
See Loshchilov & Hutter, ICLR2016,
SGDR: Stochastic Gradient Descent with Warm Restarts.
When training a model, it is often useful to lower the learning rate as
the training progresses. This schedule applies a cosine decay function with
restarts to an optimizer step, given a provided initial learning rate.
It requires a step
value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
The learning rate multiplier first decays
from 1 to alpha
for first_decay_steps
steps. Then, a warm
restart is performed. Each new warm restart runs for t_mul
times more
steps and with m_mul
times initial learning rate as the new learning rate.
Example usage:
first_decay_steps = 1000
lr_decayed_fn = (
tf.keras.optimizers.schedules.CosineDecayRestarts(
initial_learning_rate,
first_decay_steps))
You can pass this schedule directly into a tf.keras.optimizers.Optimizer
as the learning rate. The learning rate schedule is also serializable and
deserializable using tf.keras.optimizers.schedules.serialize
and
tf.keras.optimizers.schedules.deserialize
.
Returns |
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar Tensor of the same
type as initial_learning_rate .
|
Args |
initial_learning_rate
|
A scalar float32 or float64 Tensor or a
Python number. The initial learning rate.
|
first_decay_steps
|
A scalar int32 or int64 Tensor or a Python
number. Number of steps to decay over.
|
t_mul
|
A scalar float32 or float64 Tensor or a Python number.
Used to derive the number of iterations in the i-th period.
|
m_mul
|
A scalar float32 or float64 Tensor or a Python number.
Used to derive the initial learning rate of the i-th period.
|
alpha
|
A scalar float32 or float64 Tensor or a Python number.
Minimum learning rate value as a fraction of the
initial_learning_rate.
|
name
|
String. Optional name of the operation. Defaults to 'SGDRDecay'.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule
from its config.
Args |
config
|
Output of get_config() .
|
Returns |
A LearningRateSchedule instance.
|
get_config
View source
get_config()
__call__
View source
__call__(
step
)
Call self as a function.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.optimizers.schedules.CosineDecayRestarts\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L770-L911) |\n\nA LearningRateSchedule that uses a cosine decay schedule with restarts.\n\nInherits From: [`LearningRateSchedule`](../../../../tf/keras/optimizers/schedules/LearningRateSchedule)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.experimental.CosineDecayRestarts`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/CosineDecayRestarts), [`tf.optimizers.schedules.CosineDecayRestarts`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/CosineDecayRestarts)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n\\`tf.compat.v1.keras.experimental.CosineDecayRestarts\\`, \\`tf.compat.v1.keras.optimizers.schedules.CosineDecayRestarts\\`\n\n\u003cbr /\u003e\n\n tf.keras.optimizers.schedules.CosineDecayRestarts(\n initial_learning_rate,\n first_decay_steps,\n t_mul=2.0,\n m_mul=1.0,\n alpha=0.0,\n name=None\n )\n\nSee [Loshchilov \\& Hutter, ICLR2016](https://arxiv.org/abs/1608.03983),\nSGDR: Stochastic Gradient Descent with Warm Restarts.\n\nWhen training a model, it is often useful to lower the learning rate as\nthe training progresses. This schedule applies a cosine decay function with\nrestarts to an optimizer step, given a provided initial learning rate.\nIt requires a `step` value to compute the decayed learning rate. You can\njust pass a TensorFlow variable that you increment at each training step.\n\nThe schedule is a 1-arg callable that produces a decayed learning\nrate when passed the current optimizer step. This can be useful for changing\nthe learning rate value across different invocations of optimizer functions.\n\nThe learning rate multiplier first decays\nfrom 1 to `alpha` for `first_decay_steps` steps. Then, a warm\nrestart is performed. Each new warm restart runs for `t_mul` times more\nsteps and with `m_mul` times initial learning rate as the new learning rate.\n\n#### Example usage:\n\n first_decay_steps = 1000\n lr_decayed_fn = (\n tf.keras.optimizers.schedules.CosineDecayRestarts(\n initial_learning_rate,\n first_decay_steps))\n\nYou can pass this schedule directly into a [`tf.keras.optimizers.Optimizer`](../../../../tf/keras/optimizers/Optimizer)\nas the learning rate. The learning rate schedule is also serializable and\ndeserializable using [`tf.keras.optimizers.schedules.serialize`](../../../../tf/keras/optimizers/schedules/serialize) and\n[`tf.keras.optimizers.schedules.deserialize`](../../../../tf/keras/optimizers/schedules/deserialize).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A 1-arg callable learning rate schedule that takes the current optimizer step and outputs the decayed learning rate, a scalar `Tensor` of the same type as `initial_learning_rate`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| `initial_learning_rate` | A scalar `float32` or `float64` Tensor or a Python number. The initial learning rate. |\n| `first_decay_steps` | A scalar `int32` or `int64` `Tensor` or a Python number. Number of steps to decay over. |\n| `t_mul` | A scalar `float32` or `float64` `Tensor` or a Python number. Used to derive the number of iterations in the i-th period. |\n| `m_mul` | A scalar `float32` or `float64` `Tensor` or a Python number. Used to derive the initial learning rate of the i-th period. |\n| `alpha` | A scalar `float32` or `float64` Tensor or a Python number. Minimum learning rate value as a fraction of the initial_learning_rate. |\n| `name` | String. Optional name of the operation. Defaults to 'SGDRDecay'. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L88-L98) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `LearningRateSchedule` from its config.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `LearningRateSchedule` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L903-L911) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v2.13.1/keras/optimizers/schedules/learning_rate_schedule.py#L849-L901) \n\n __call__(\n step\n )\n\nCall self as a function."]]