View source on GitHub
  
 | 
Initializer base class: all Keras initializers inherit from this class.
Initializers should implement a __call__() method with the following
signature:
def __call__(self, shape, dtype=None, **kwargs):
    # returns a tensor of shape `shape` and dtype `dtype`
    # containing values drawn from a distribution of your choice.
    return tf.random.uniform(shape=shape, dtype=dtype)
Optionally, you an also implement the method get_config() and the class
method from_config() in order to support serialization -- just like with
any Keras object.
Here's a simple example: a random normal initializer.
class ExampleRandomNormal(Initializer):
    def __init__(self, mean, stddev):
        self.mean = mean
        self.stddev = stddev
    def __call__(self, shape, dtype=None, **kwargs):
        return tf.random.normal(
            shape, mean=self.mean, stddev=self.stddev, dtype=dtype
        )
    def get_config(self):  # To support serialization
        return {"mean": self.mean, "stddev": self.stddev}
Note that we don't have to implement from_config() in the example above
since the constructor arguments of the class the keys in the config returned
by get_config are the same. In this case, the default from_config()
works fine.
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
config
 | 
A Python dictionary, the output of get_config().
 | 
| Returns | |
|---|---|
An Initializer instance.
 | 
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, **kwargs
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
shape
 | 
Shape of the tensor. | 
dtype
 | 
Optional dtype of the tensor. | 
**kwargs
 | 
Additional keyword arguments. | 
    View source on GitHub