tf.compat.v1.nn.rnn_cell.GRUCell
Stay organized with collections
Save and categorize content based on your preferences.
Gated Recurrent Unit cell.
Inherits From: RNNCell
, Layer
, Layer
, Module
tf.compat.v1.nn.rnn_cell.GRUCell(
num_units,
activation=None,
reuse=None,
kernel_initializer=None,
bias_initializer=None,
name=None,
dtype=None,
**kwargs
)
Note that this cell is not optimized for performance. Please use
tf.compat.v1.keras.layers.CuDNNGRU
for better performance on GPU, or
tf.raw_ops.GRUBlockCell
for better performance on CPU.
Args |
num_units
|
int, The number of units in the GRU cell.
|
activation
|
Nonlinearity to use. Default: tanh .
|
reuse
|
(optional) Python boolean describing whether to reuse variables in
an existing scope. If not True , and the existing scope already has
the given variables, an error is raised.
|
kernel_initializer
|
(optional) The initializer to use for the weight and
projection matrices.
|
bias_initializer
|
(optional) The initializer to use for the bias.
|
name
|
String, the name of the layer. Layers with the same name will share
weights, but to avoid mistakes we require reuse=True in such cases.
|
dtype
|
Default dtype of the layer (default of None means use the type of
the first input). Required when build is called before call .
|
**kwargs
|
Dict, keyword named properties for common layer attributes, like
trainable etc when constructing the cell from configs of get_config().
References: Learning Phrase Representations using RNN Encoder Decoder
for Statistical Machine Translation: Cho et al., 2014
(pdf)
|
Attributes |
graph
|
|
output_size
|
Integer or TensorShape: size of outputs produced by this cell.
|
scope_name
|
|
state_size
|
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of
Integers or TensorShapes.
|
Methods
apply
View source
apply(
*args, **kwargs
)
get_initial_state
View source
get_initial_state(
inputs=None, batch_size=None, dtype=None
)
get_losses_for
View source
get_losses_for(
inputs
)
Retrieves losses relevant to a specific set of inputs.
Args |
inputs
|
Input tensor or list/tuple of input tensors.
|
Returns |
List of loss tensors of the layer that depend on inputs .
|
get_updates_for
View source
get_updates_for(
inputs
)
Retrieves updates relevant to a specific set of inputs.
Args |
inputs
|
Input tensor or list/tuple of input tensors.
|
Returns |
List of update ops of the layer that depend on inputs .
|
zero_state
View source
zero_state(
batch_size, dtype
)
Return zero-filled state tensor(s).
Args |
batch_size
|
int, float, or unit Tensor representing the batch size.
|
dtype
|
the data type to use for the state.
|
Returns |
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size, s] for each s in state_size .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[]]