ดูบน TensorFlow.org | ทำงานใน Google Colab | ดูบน GitHub | ดาวน์โหลดโน๊ตบุ๊ค | ดูรุ่น TF Hub |
TensorFlow Hub (TF-Hub) เป็นแพลตฟอร์มที่จะแบ่งปันความเชี่ยวชาญการเรียนรู้เครื่องบรรจุในทรัพยากรที่นำมาใช้ใหม่โมดูลสะดุดตาก่อนการฝึกอบรม
ใน Colab นี้เราจะใช้โมดูลที่แพคเกจที่ DELF เครือข่ายประสาทและตรรกะสำหรับการประมวลผลภาพเพื่อแจ้ง keypoints และอธิบายของพวกเขา น้ำหนักของเครือข่ายประสาทได้รับการฝึกฝนในภาพของสถานที่สำคัญที่อธิบายไว้ใน บทความนี้
ติดตั้ง
pip install scikit-image
from absl import logging
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageOps
from scipy.spatial import cKDTree
from skimage.feature import plot_matches
from skimage.measure import ransac
from skimage.transform import AffineTransform
from six import BytesIO
import tensorflow as tf
import tensorflow_hub as hub
from six.moves.urllib.request import urlopen
ข้อมูล
ในเซลล์ถัดไป เราระบุ URL ของรูปภาพสองภาพที่เราต้องการประมวลผลด้วย DELF เพื่อจับคู่และเปรียบเทียบ
เลือกภาพ
ดาวน์โหลด ปรับขนาด บันทึก และแสดงภาพ
def download_and_resize(name, url, new_width=256, new_height=256):
path = tf.keras.utils.get_file(url.split('/')[-1], url)
image = Image.open(path)
image = ImageOps.fit(image, (new_width, new_height), Image.ANTIALIAS)
return image
image1 = download_and_resize('image_1.jpg', IMAGE_1_URL)
image2 = download_and_resize('image_2.jpg', IMAGE_2_URL)
plt.subplot(1,2,1)
plt.imshow(image1)
plt.subplot(1,2,2)
plt.imshow(image2)
Downloading data from https://upload.wikimedia.org/wikipedia/commons/2/28/Bridge_of_Sighs%2C_Oxford.jpg 7020544/7013850 [==============================] - 0s 0us/step 7028736/7013850 [==============================] - 0s 0us/step Downloading data from https://upload.wikimedia.org/wikipedia/commons/c/c3/The_Bridge_of_Sighs_and_Sheldonian_Theatre%2C_Oxford.jpg 14172160/14164194 [==============================] - 1s 0us/step 14180352/14164194 [==============================] - 1s 0us/step <matplotlib.image.AxesImage at 0x7f333b5e2d10>
ใช้โมดูล DELF กับ data
โมดูล DELF ใช้รูปภาพเป็นอินพุต และจะอธิบายจุดที่น่าสังเกตด้วยเวกเตอร์ เซลล์ต่อไปนี้มีแกนหลักของตรรกะของ colab
delf = hub.load('https://tfhub.dev/google/delf/1').signatures['default']
def run_delf(image):
np_image = np.array(image)
float_image = tf.image.convert_image_dtype(np_image, tf.float32)
return delf(
image=float_image,
score_threshold=tf.constant(100.0),
image_scales=tf.constant([0.25, 0.3536, 0.5, 0.7071, 1.0, 1.4142, 2.0]),
max_feature_num=tf.constant(1000))
result1 = run_delf(image1)
result2 = run_delf(image2)
ใช้สถานที่และเวกเตอร์คำอธิบายเพื่อให้ตรงกับภาพ
ไม่จำเป็นต้องใช้ TensorFlow สำหรับการโพสต์การประมวลผลและการแสดงภาพ
def match_images(image1, image2, result1, result2):
distance_threshold = 0.8
# Read features.
num_features_1 = result1['locations'].shape[0]
print("Loaded image 1's %d features" % num_features_1)
num_features_2 = result2['locations'].shape[0]
print("Loaded image 2's %d features" % num_features_2)
# Find nearest-neighbor matches using a KD tree.
d1_tree = cKDTree(result1['descriptors'])
_, indices = d1_tree.query(
result2['descriptors'],
distance_upper_bound=distance_threshold)
# Select feature locations for putative matches.
locations_2_to_use = np.array([
result2['locations'][i,]
for i in range(num_features_2)
if indices[i] != num_features_1
])
locations_1_to_use = np.array([
result1['locations'][indices[i],]
for i in range(num_features_2)
if indices[i] != num_features_1
])
# Perform geometric verification using RANSAC.
_, inliers = ransac(
(locations_1_to_use, locations_2_to_use),
AffineTransform,
min_samples=3,
residual_threshold=20,
max_trials=1000)
print('Found %d inliers' % sum(inliers))
# Visualize correspondences.
_, ax = plt.subplots()
inlier_idxs = np.nonzero(inliers)[0]
plot_matches(
ax,
image1,
image2,
locations_1_to_use,
locations_2_to_use,
np.column_stack((inlier_idxs, inlier_idxs)),
matches_color='b')
ax.axis('off')
ax.set_title('DELF correspondences')
match_images(image1, image2, result1, result2)
Loaded image 1's 233 features Loaded image 2's 262 features Found 49 inliers