tf.keras.optimizers.Ftrl
Stay organized with collections
Save and categorize content based on your preferences.
Optimizer that implements the FTRL algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Ftrl(
learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1,
l1_regularization_strength=0.0, l2_regularization_strength=0.0,
name='Ftrl', l2_shrinkage_regularization_strength=0.0, beta=0.0,
**kwargs
)
See Algorithm 1 of this
paper.
This version has support for both online L2 (the L2 penalty given in the paper
above) and shrinkage-type L2 (which is the addition of an L2 penalty to the
loss function).
Initialization:
$$t = 0$$
$$n_{0} = 0$$
$$\sigma_{0} = 0$$
$$z_{0} = 0$$
Update (
$$i$$
is variable index,
$$\alpha$$
is the learning rate):
$$t = t + 1$$
$$n_{t,i} = n_{t-1,i} + g_{t,i}^{2}$$
$$\sigma_{t,i} = (\sqrt{n_{t,i} } - \sqrt{n_{t-1,i} }) / \alpha$$
$$z_{t,i} = z_{t-1,i} + g_{t,i} - \sigma_{t,i} * w_{t,i}$$
$$w_{t,i} = - ((\beta+\sqrt{n_{t,i} }) / \alpha + 2 * \lambda_{2})^{-1} *
(z_{i} - sgn(z_{i}) * \lambda_{1}) if \abs{z_{i} } > \lambda_{i}
else 0$$
Check the documentation for the l2_shrinkage_regularization_strength
parameter for more details when shrinkage is enabled, in which case gradient
is replaced with gradient_with_shrinkage.
Args |
learning_rate
|
A Tensor , floating point value, or a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule . The learning rate.
|
learning_rate_power
|
A float value, must be less or equal to zero.
Controls how the learning rate decreases during training. Use zero for
a fixed learning rate.
|
initial_accumulator_value
|
The starting value for accumulators.
Only zero or positive values are allowed.
|
l1_regularization_strength
|
A float value, must be greater than or
equal to zero.
|
l2_regularization_strength
|
A float value, must be greater than or
equal to zero.
|
name
|
Optional name prefix for the operations created when applying
gradients. Defaults to "Ftrl" .
|
l2_shrinkage_regularization_strength
|
A float value, must be greater than
or equal to zero. This differs from L2 above in that the L2 above is a
stabilization penalty, whereas this L2 shrinkage is a magnitude penalty.
When input is sparse shrinkage will only happen on the active weights.
|
beta
|
A float value, representing the beta value from the paper.
|
**kwargs
|
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue" .
"clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips
gradients by value.
|
Reference:
Raises |
ValueError
|
in case of any invalid argument.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-02-18 UTC."],[],[],null,["# tf.keras.optimizers.Ftrl\n\n|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/optimizers/Ftrl) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/optimizer_v2/ftrl.py#L30-L250) |\n\nOptimizer that implements the FTRL algorithm.\n\nInherits From: [`Optimizer`](../../../tf/keras/optimizers/Optimizer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.optimizers.Ftrl`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ftrl)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.optimizers.Ftrl`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ftrl)\n\n\u003cbr /\u003e\n\n tf.keras.optimizers.Ftrl(\n learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1,\n l1_regularization_strength=0.0, l2_regularization_strength=0.0,\n name='Ftrl', l2_shrinkage_regularization_strength=0.0, beta=0.0,\n **kwargs\n )\n\nSee Algorithm 1 of this\n[paper](https://research.google.com/pubs/archive/41159.pdf).\nThis version has support for both online L2 (the L2 penalty given in the paper\nabove) and shrinkage-type L2 (which is the addition of an L2 penalty to the\nloss function).\n\n#### Initialization:\n\n$$t = 0$$ \n$$n_{0} = 0$$ \n$$\\\\sigma_{0} = 0$$ \n$$z_{0} = 0$$\n\nUpdate ( \n$$i$$\n\nis variable index, \n$$\\\\alpha$$\n\nis the learning rate): \n$$t = t + 1$$ \n$$n_{t,i} = n_{t-1,i} + g_{t,i}\\^{2}$$ \n$$\\\\sigma_{t,i} = (\\\\sqrt{n_{t,i} } - \\\\sqrt{n_{t-1,i} }) / \\\\alpha$$ \n$$z_{t,i} = z_{t-1,i} + g_{t,i} - \\\\sigma_{t,i} \\* w_{t,i}$$ \n$$w_{t,i} = - ((\\\\beta+\\\\sqrt{n_{t,i} }) / \\\\alpha + 2 \\* \\\\lambda_{2})\\^{-1} \\* (z_{i} - sgn(z_{i}) \\* \\\\lambda_{1}) if \\\\abs{z_{i} } \\\u003e \\\\lambda_{i} else 0$$\n\nCheck the documentation for the l2_shrinkage_regularization_strength\nparameter for more details when shrinkage is enabled, in which case gradient\nis replaced with gradient_with_shrinkage.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `learning_rate` | A `Tensor`, floating point value, or a schedule that is a [`tf.keras.optimizers.schedules.LearningRateSchedule`](../../../tf/keras/optimizers/schedules/LearningRateSchedule). The learning rate. |\n| `learning_rate_power` | A float value, must be less or equal to zero. Controls how the learning rate decreases during training. Use zero for a fixed learning rate. |\n| `initial_accumulator_value` | The starting value for accumulators. Only zero or positive values are allowed. |\n| `l1_regularization_strength` | A float value, must be greater than or equal to zero. |\n| `l2_regularization_strength` | A float value, must be greater than or equal to zero. |\n| `name` | Optional name prefix for the operations created when applying gradients. Defaults to `\"Ftrl\"`. |\n| `l2_shrinkage_regularization_strength` | A float value, must be greater than or equal to zero. This differs from L2 above in that the L2 above is a stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. When input is sparse shrinkage will only happen on the active weights. |\n| `beta` | A float value, representing the beta value from the paper. |\n| `**kwargs` | Keyword arguments. Allowed to be one of `\"clipnorm\"` or `\"clipvalue\"`. `\"clipnorm\"` (float) clips gradients by norm; `\"clipvalue\"` (float) clips gradients by value. |\n\n\u003cbr /\u003e\n\n#### Reference:\n\n- [paper](https://www.eecs.tufts.edu/%7Edsculley/papers/ad-click-prediction.pdf)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------|\n| `ValueError` | in case of any invalid argument. |\n\n\u003cbr /\u003e"]]