tf.keras.metrics.FalsePositives
Stay organized with collections
Save and categorize content based on your preferences.
Calculates the number of false positives.
Inherits From: Metric
, Layer
, Module
tf.keras.metrics.FalsePositives(
thresholds=None, name=None, dtype=None
)
If sample_weight
is given, calculates the sum of the weights of
false positives. This metric creates one local variable, accumulator
that is used to keep track of the number of false positives.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args |
thresholds
|
(Optional) Defaults to 0.5. A float value or a python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is true , below is false ). One metric
value is generated for each threshold value.
|
name
|
(Optional) string name of the metric instance.
|
dtype
|
(Optional) data type of the metric result.
|
Standalone usage:
m = tf.keras.metrics.FalsePositives()
m.update_state([0, 1, 0, 0], [0, 0, 1, 1])
m.result().numpy()
2.0
m.reset_states()
m.update_state([0, 1, 0, 0], [0, 0, 1, 1], sample_weight=[0, 0, 1, 0])
m.result().numpy()
1.0
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.FalsePositives()])
Methods
reset_states
View source
reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps,
when a metric is evaluated during training.
result
View source
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the
metric value using the state variables.
update_state
View source
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates the metric statistics.
Args |
y_true
|
The ground truth values.
|
y_pred
|
The predicted values.
|
sample_weight
|
Optional weighting of each example. Defaults to 1. Can be a
Tensor whose rank is either 0, or the same rank as y_true , and must
be broadcastable to y_true .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-02-18 UTC."],[],[],null,["# tf.keras.metrics.FalsePositives\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/metrics/FalsePositives) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/metrics.py#L980-L1025) |\n\nCalculates the number of false positives.\n\nInherits From: [`Metric`](../../../tf/keras/metrics/Metric), [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.metrics.FalsePositives`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/FalsePositives)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.metrics.FalsePositives`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/FalsePositives)\n\n\u003cbr /\u003e\n\n tf.keras.metrics.FalsePositives(\n thresholds=None, name=None, dtype=None\n )\n\nIf `sample_weight` is given, calculates the sum of the weights of\nfalse positives. This metric creates one local variable, `accumulator`\nthat is used to keep track of the number of false positives.\n\nIf `sample_weight` is `None`, weights default to 1.\nUse `sample_weight` of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `thresholds` | (Optional) Defaults to 0.5. A float value or a python list/tuple of float threshold values in \\[0, 1\\]. A threshold is compared with prediction values to determine the truth value of predictions (i.e., above the threshold is `true`, below is `false`). One metric value is generated for each threshold value. |\n| `name` | (Optional) string name of the metric instance. |\n| `dtype` | (Optional) data type of the metric result. |\n\n\u003cbr /\u003e\n\n#### Standalone usage:\n\n m = tf.keras.metrics.FalsePositives()\n m.update_state([0, 1, 0, 0], [0, 0, 1, 1])\n m.result().numpy()\n 2.0\n\n m.reset_states()\n m.update_state([0, 1, 0, 0], [0, 0, 1, 1], sample_weight=[0, 0, 1, 0])\n m.result().numpy()\n 1.0\n\nUsage with `compile()` API: \n\n model.compile(optimizer='sgd',\n loss='mse',\n metrics=[tf.keras.metrics.FalsePositives()])\n\nMethods\n-------\n\n### `reset_states`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/metrics.py#L968-L971) \n\n reset_states()\n\nResets all of the metric state variables.\n\nThis function is called between epochs/steps,\nwhen a metric is evaluated during training.\n\n### `result`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/metrics.py#L961-L966) \n\n result()\n\nComputes and returns the metric value tensor.\n\nResult computation is an idempotent operation that simply calculates the\nmetric value using the state variables.\n\n### `update_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/keras/metrics.py#L941-L959) \n\n update_state(\n y_true, y_pred, sample_weight=None\n )\n\nAccumulates the metric statistics.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | The ground truth values. |\n| `y_pred` | The predicted values. |\n| `sample_weight` | Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Update op. ||\n\n\u003cbr /\u003e"]]