tf.constant
Stay organized with collections
Save and categorize content based on your preferences.
Creates a constant tensor from a tensor-like object.
tf.constant(
value, dtype=None, shape=None, name='Const'
)
If the argument dtype
is not specified, then the type is inferred from
the type of value
.
# Constant 1-D Tensor from a python list.
tf.constant([1, 2, 3, 4, 5, 6])
<tf.Tensor: shape=(6,), dtype=int32,
numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)>
# Or a numpy array
a = np.array([[1, 2, 3], [4, 5, 6]])
tf.constant(a)
<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
array([[1, 2, 3],
[4, 5, 6]])>
If dtype
is specified the resulting tensor values are cast to the requested
dtype
.
tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)
<tf.Tensor: shape=(6,), dtype=float64,
numpy=array([1., 2., 3., 4., 5., 6.])>
If shape
is set, the value
is reshaped to match. Scalars are expanded to
fill the shape
:
tf.constant(0, shape=(2, 3))
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
[0, 0, 0]], dtype=int32)>
tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[1, 2, 3],
[4, 5, 6]], dtype=int32)>
tf.constant
has no effect if an eager Tensor is passed as the value
, it
even transmits gradients:
v = tf.Variable([0.0])
with tf.GradientTape() as g:
loss = tf.constant(v + v)
g.gradient(loss, v).numpy()
array([2.], dtype=float32)
But, since tf.constant
embeds the value in the tf.Graph
this fails for
symbolic tensors:
with tf.compat.v1.Graph().as_default():
i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
t = tf.constant(i)
Traceback (most recent call last):
TypeError: ...
tf.constant
will always create CPU (host) tensors. In order to create
tensors on other devices, use tf.identity
. (If the value
is an eager
Tensor, however, the tensor will be returned unmodified as mentioned above.)
tf.convert_to_tensor
is similar but:
- It has no
shape
argument.
- Symbolic tensors are allowed to pass through.
with tf.compat.v1.Graph().as_default():
i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)
t = tf.convert_to_tensor(i)
tf.fill
: differs in a few ways:
tf.constant
supports arbitrary constants, not just uniform scalar
Tensors like tf.fill
.
tf.fill
creates an Op in the graph that is expanded at runtime, so it
can efficiently represent large tensors.
- Since
tf.fill
does not embed the value, it can produce dynamically
sized outputs.
Args |
value
|
A constant value (or list) of output type dtype .
|
dtype
|
The type of the elements of the resulting tensor.
|
shape
|
Optional dimensions of resulting tensor.
|
name
|
Optional name for the tensor.
|
Returns |
A Constant Tensor.
|
Raises |
TypeError
|
if shape is incorrectly specified or unsupported.
|
ValueError
|
if called on a symbolic tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-02-18 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-02-18 UTC."],[],[],null,["# tf.constant\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/constant) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.4.0/tensorflow/python/framework/constant_op.py#L166-L265) |\n\nCreates a constant tensor from a tensor-like object. \n\n tf.constant(\n value, dtype=None, shape=None, name='Const'\n )\n\n| **Note:** All eager [`tf.Tensor`](../tf/Tensor) values are immutable (in contrast to [`tf.Variable`](../tf/Variable)). There is nothing especially *constant* about the value returned from [`tf.constant`](../tf/constant). This function it is not fundamentally different from [`tf.convert_to_tensor`](../tf/convert_to_tensor). The name [`tf.constant`](../tf/constant) comes from the `value` being embeded in a `Const` node in the [`tf.Graph`](../tf/Graph). [`tf.constant`](../tf/constant) is useful for asserting that the value can be embedded that way.\n\nIf the argument `dtype` is not specified, then the type is inferred from\nthe type of `value`. \n\n # Constant 1-D Tensor from a python list.\n tf.constant([1, 2, 3, 4, 5, 6])\n \u003ctf.Tensor: shape=(6,), dtype=int32,\n numpy=array([1, 2, 3, 4, 5, 6], dtype=int32)\u003e\n # Or a numpy array\n a = np.array([[1, 2, 3], [4, 5, 6]])\n tf.constant(a)\n \u003ctf.Tensor: shape=(2, 3), dtype=int64, numpy=\n array([[1, 2, 3],\n [4, 5, 6]])\u003e\n\nIf `dtype` is specified the resulting tensor values are cast to the requested\n`dtype`. \n\n tf.constant([1, 2, 3, 4, 5, 6], dtype=tf.float64)\n \u003ctf.Tensor: shape=(6,), dtype=float64,\n numpy=array([1., 2., 3., 4., 5., 6.])\u003e\n\nIf `shape` is set, the `value` is reshaped to match. Scalars are expanded to\nfill the `shape`: \n\n tf.constant(0, shape=(2, 3))\n \u003ctf.Tensor: shape=(2, 3), dtype=int32, numpy=\n array([[0, 0, 0],\n [0, 0, 0]], dtype=int32)\u003e\n tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])\n \u003ctf.Tensor: shape=(2, 3), dtype=int32, numpy=\n array([[1, 2, 3],\n [4, 5, 6]], dtype=int32)\u003e\n\n[`tf.constant`](../tf/constant) has no effect if an eager Tensor is passed as the `value`, it\neven transmits gradients: \n\n v = tf.Variable([0.0])\n with tf.GradientTape() as g:\n loss = tf.constant(v + v)\n g.gradient(loss, v).numpy()\n array([2.], dtype=float32)\n\nBut, since [`tf.constant`](../tf/constant) embeds the value in the [`tf.Graph`](../tf/Graph) this fails for\nsymbolic tensors: \n\n with tf.compat.v1.Graph().as_default():\n i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)\n t = tf.constant(i)\n Traceback (most recent call last):\n\n TypeError: ...\n\n[`tf.constant`](../tf/constant) will *always* create CPU (host) tensors. In order to create\ntensors on other devices, use [`tf.identity`](../tf/identity). (If the `value` is an eager\nTensor, however, the tensor will be returned unmodified as mentioned above.)\n\n#### Related Ops:\n\n- [`tf.convert_to_tensor`](../tf/convert_to_tensor) is similar but:\n - It has no `shape` argument.\n - Symbolic tensors are allowed to pass through.\n\n with tf.compat.v1.Graph().as_default():\n i = tf.compat.v1.placeholder(shape=[None, None], dtype=tf.float32)\n t = tf.convert_to_tensor(i)\n \n- [`tf.fill`](../tf/fill): differs in a few ways:\n - [`tf.constant`](../tf/constant) supports arbitrary constants, not just uniform scalar Tensors like [`tf.fill`](../tf/fill).\n - [`tf.fill`](../tf/fill) creates an Op in the graph that is expanded at runtime, so it can efficiently represent large tensors.\n - Since [`tf.fill`](../tf/fill) does not embed the value, it can produce dynamically sized outputs.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|----------------------------------------------------|\n| `value` | A constant value (or list) of output type `dtype`. |\n| `dtype` | The type of the elements of the resulting tensor. |\n| `shape` | Optional dimensions of resulting tensor. |\n| `name` | Optional name for the tensor. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A Constant Tensor. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------|\n| `TypeError` | if shape is incorrectly specified or unsupported. |\n| `ValueError` | if called on a symbolic tensor. |\n\n\u003cbr /\u003e"]]