tf.tpu.experimental.embedding.SGD
Stay organized with collections
Save and categorize content based on your preferences.
Optimization parameters for stochastic gradient descent for TPU embeddings.
tf.tpu.experimental.embedding.SGD(
learning_rate=0.01, clip_weight_min=None, clip_weight_max=None,
weight_decay_factor=None, multiply_weight_decay_factor_by_learning_rate=None
)
Pass this to tf.tpu.experimental.embedding.TPUEmbedding
via the optimizer
argument to set the global optimizer and its parameters:
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
...
optimizer=tf.tpu.experimental.embedding.SGD(0.1))
This can also be used in a tf.tpu.experimental.embedding.TableConfig
as the
optimizer parameter to set a table specific optimizer. This will override the
optimizer and parameters for global embedding optimizer defined above:
table_one = tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=...,
dim=...,
optimizer=tf.tpu.experimental.embedding.SGD(0.2))
table_two = tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=...,
dim=...)
feature_config = (
tf.tpu.experimental.embedding.FeatureConfig(
table=table_one),
tf.tpu.experimental.embedding.FeatureConfig(
table=table_two))
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
feature_config=feature_config,
batch_size=...
optimizer=tf.tpu.experimental.embedding.SGD(0.1))
In the above example, the first feature will be looked up in a table that has
a learning rate of 0.2 while the second feature will be looked up in a table
that has a learning rate of 0.1.
See 'tensorflow/core/protobuf/tpu/optimization_parameters.proto' for a
complete description of these parameters and their impacts on the optimizer
algorithm.
Args |
learning_rate
|
The learning rate. It should be a floating point value or a
callable taking no arguments for a dynamic learning rate.
|
clip_weight_min
|
the minimum value to clip by; None means -infinity.
|
clip_weight_max
|
the maximum value to clip by; None means +infinity.
|
weight_decay_factor
|
amount of weight decay to apply; None means that the
weights are not decayed. Weights are decayed by multiplying the weight
by this factor each step.
|
multiply_weight_decay_factor_by_learning_rate
|
if true,
weight_decay_factor is multiplied by the current learning rate.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.tpu.experimental.embedding.SGD\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/tpu/tpu_embedding_v2_utils.py#L124-L207) |\n\nOptimization parameters for stochastic gradient descent for TPU embeddings.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.tpu.experimental.embedding.SGD`](/api_docs/python/tf/tpu/experimental/embedding/SGD)\n\n\u003cbr /\u003e\n\n tf.tpu.experimental.embedding.SGD(\n learning_rate=0.01, clip_weight_min=None, clip_weight_max=None,\n weight_decay_factor=None, multiply_weight_decay_factor_by_learning_rate=None\n )\n\nPass this to [`tf.tpu.experimental.embedding.TPUEmbedding`](../../../../tf/tpu/experimental/embedding/TPUEmbedding) via the `optimizer`\nargument to set the global optimizer and its parameters: \n\n embedding = tf.tpu.experimental.embedding.TPUEmbedding(\n ...\n optimizer=tf.tpu.experimental.embedding.SGD(0.1))\n\nThis can also be used in a [`tf.tpu.experimental.embedding.TableConfig`](../../../../tf/tpu/experimental/embedding/TableConfig) as the\noptimizer parameter to set a table specific optimizer. This will override the\noptimizer and parameters for global embedding optimizer defined above: \n\n table_one = tf.tpu.experimental.embedding.TableConfig(\n vocabulary_size=...,\n dim=...,\n optimizer=tf.tpu.experimental.embedding.SGD(0.2))\n table_two = tf.tpu.experimental.embedding.TableConfig(\n vocabulary_size=...,\n dim=...)\n\n feature_config = (\n tf.tpu.experimental.embedding.FeatureConfig(\n table=table_one),\n tf.tpu.experimental.embedding.FeatureConfig(\n table=table_two))\n\n embedding = tf.tpu.experimental.embedding.TPUEmbedding(\n feature_config=feature_config,\n batch_size=...\n optimizer=tf.tpu.experimental.embedding.SGD(0.1))\n\nIn the above example, the first feature will be looked up in a table that has\na learning rate of 0.2 while the second feature will be looked up in a table\nthat has a learning rate of 0.1.\n\nSee 'tensorflow/core/protobuf/tpu/optimization_parameters.proto' for a\ncomplete description of these parameters and their impacts on the optimizer\nalgorithm.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `learning_rate` | The learning rate. It should be a floating point value or a callable taking no arguments for a dynamic learning rate. |\n| `clip_weight_min` | the minimum value to clip by; None means -infinity. |\n| `clip_weight_max` | the maximum value to clip by; None means +infinity. |\n| `weight_decay_factor` | amount of weight decay to apply; None means that the weights are not decayed. Weights are decayed by multiplying the weight by this factor each step. |\n| `multiply_weight_decay_factor_by_learning_rate` | if true, `weight_decay_factor` is multiplied by the current learning rate. |\n\n\u003cbr /\u003e"]]