View source on GitHub |
Base class for representing distributed values.
tf.distribute.DistributedValues(
values
)
A subclass instance of tf.distribute.DistributedValues
is created when
creating variables within a distribution strategy, iterating a
tf.distribute.DistributedDataset
or through tf.distribute.Strategy.run
.
This base class should never be instantiated directly.
tf.distribute.DistributedValues
contains a value per replica. Depending on
the subclass, the values could either be synced on update, synced on demand,
or never synced.
tf.distribute.DistributedValues
can be reduced to obtain single value across
replicas, as input into tf.distribute.Strategy.run
or the per-replica values
inspected using tf.distribute.Strategy.experimental_local_results
.
Example usage:
- Created from a
tf.distribute.DistributedDataset
:
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)
dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))
distributed_values = next(dataset_iterator)
- Returned by
run
:
strategy = tf.distribute.MirroredStrategy()
@tf.function
def run():
ctx = tf.distribute.get_replica_context()
return ctx.replica_id_in_sync_group
distributed_values = strategy.run(run)
- As input into
run
:
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)
dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))
distributed_values = next(dataset_iterator)
@tf.function
def run(input):
return input + 1.0
updated_value = strategy.run(run, args=(distributed_values,))
- Reduce value:
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)
dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))
distributed_values = next(dataset_iterator)
reduced_value = strategy.reduce(tf.distribute.ReduceOp.SUM,
distributed_values,
axis = 0)
- Inspect per replica values:
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)
dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))
per_replica_values = strategy.experimental_local_results(
distributed_values)
per_replica_values
(<tf.Tensor: shape=(2,), dtype=float32,
numpy=array([5., 6.], dtype=float32)>,)