Initializer that generates tensors with a uniform distribution.
tf.random_uniform_initializer(
minval=-0.05, maxval=0.05, seed=None
)
Initializers allow you to pre-specify an initialization strategy, encoded in
the Initializer object, without knowing the shape and dtype of the variable
being initialized.
Examples:
def make_variables(k, initializer):
return (tf.Variable(initializer(shape=[k], dtype=tf.float32)),
tf.Variable(initializer(shape=[k, k], dtype=tf.float32)))
v1, v2 = make_variables(3, tf.ones_initializer())
v1
<tf.Variable ... shape=(3,) ... numpy=array([1., 1., 1.], dtype=float32)>
v2
<tf.Variable ... shape=(3, 3) ... numpy=
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]], dtype=float32)>
make_variables(4, tf.random_uniform_initializer(minval=-1., maxval=1.))
(<tf.Variable...shape=(4,) dtype=float32...>, <tf.Variable...shape=(4, 4) ...
Args |
minval
|
A python scalar or a scalar tensor. Lower bound of the range of
random values to generate (inclusive).
|
maxval
|
A python scalar or a scalar tensor. Upper bound of the range of
random values to generate (exclusive).
|
seed
|
A Python integer. Used to create random seeds. See
tf.random.set_seed for behavior.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary.
It will typically be the output of get_config .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor. Only floating point and integer
types are supported.
|
Raises |
ValueError
|
If the dtype is not numeric.
|