جریان تنسور:: عملیات:: TakeManySparseFromTensorsMap
#include <sparse_ops.h>
یک نمایش پراکنده را به یک تانسور متراکم تبدیل می کند.
خلاصه
یک آرایه dense
با شکل output_shape
می سازد به طوری که
اگر sparse_indices اسکالر باشد
متراکم[i] = (i == sparse_indices ? sparse_values : default_value)
اگر sparse_indices یک بردار باشد، برای هر i
متراکم[شاخص_پراکنده[i]] = مقادیر_کم[i]
اگر شاخص_های پراکنده یک ماتریس n در d باشد، برای هر i در [0، n)
متراکم[شاخص_های_پراک[i][0]، ...، شاخص_های_کم[i][d-1]] = مقادیر_کم[i]
All other values in `dense` are set to `default_value`. If `sparse_values` is a scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not contain any repeats. If `validate_indices` is true, these properties are checked during execution.
Arguments: * scope: A Scope object * sparse_indices: 0-D, 1-D, or 2-D. `sparse_indices[i]` contains the complete index where `sparse_values[i]` will be placed. * output_shape: 1-D. Shape of the dense output tensor. * sparse_values: 1-D. Values corresponding to each row of `sparse_indices`, or a scalar value to be used for all sparse indices. * default_value: Scalar value to set for indices not specified in `sparse_indices`.
Optional attributes (see `Attrs`): * validate_indices: If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.
Returns: * `Output`: Dense output tensor of shape `output_shape`. */ class SparseToDense { public: /// Optional attribute setters for SparseToDense struct Attrs { /** If true, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.
Defaults to true */ TF_MUST_USE_RESULT Attrs ValidateIndices(bool x) { Attrs ret = *this; ret.validate_indices_ = x; return ret; }
bool validate_indices_ = true; }; SparseToDense(const tensorflow::Scope& scope, tensorflow::Input sparse_indices, tensorflow::Input output_shape, tensorflow::Input sparse_values, tensorflow::Input default_value); SparseToDense(const tensorflow::Scope& scope, tensorflow::Input sparse_indices, tensorflow::Input output_shape, tensorflow::Input sparse_values, tensorflow::Input default_value, const SparseToDense::Attrs& attrs); operator ::tensorflow::Output() const { return dense; } operator ::tensorflow::Input() const { return dense; } ::tensorflow::Node* node() const { return dense.node(); }
static Attrs ValidateIndices(bool x) { return Attrs().ValidateIndices(x); }
Operation operation; tensorflow::Output dense; };
/** Read `SparseTensors` from a `SparseTensorsMap` and concatenate them.
The input `sparse_handles` must be an `int64` matrix of shape `[N, 1]` where `N` is the minibatch size and the rows correspond to the output handles of `AddSparseToTensorsMap` or `AddManySparseToTensorsMap`. The ranks of the original `SparseTensor` objects that went into the given input ops must all match. When the final `SparseTensor` is created, it has rank one higher than the ranks of the incoming `SparseTensor` objects (they have been concatenated along a new row dimension on the left).
The output `SparseTensor` object's shape values for all dimensions but the first are the max across the input `SparseTensor` objects' shape values for the corresponding dimensions. Its first shape value is `N`, the minibatch size.
The input `SparseTensor` objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run `SparseReorder` to restore index ordering.
For example, if the handles represent an input, which is a `[2, 3]` matrix representing two original `SparseTensor` objects:
index = [ 0] [10] [20] values = [1, 2, 3] shape = [50]
and
index = [ 2] [10] values = [4, 5] shape = [30]
then the final `SparseTensor` will be:
index = [0 0] [0 10] [0 20] [1 2] [1 10] values = [1, 2, 3, 4, 5] shape = [2 50] ```Arguments:
- scope: A Scope object
- sparse_handles: 1-D, The
N
serializedSparseTensor
objects. Shape:[N]
. - dtype: The
dtype
of theSparseTensor
objects stored in theSparseTensorsMap
.
Optional attributes (see Attrs
):
- container: The container name for the
SparseTensorsMap
read by this op. - shared_name: The shared name for the
SparseTensorsMap
read by this op. It should not be blank; rather theshared_name
or unique Operation name of the Op that created the originalSparseTensorsMap
should be used.
Returns:
Output
sparse_indices: 2-D. Theindices
of the minibatchSparseTensor
.Output
sparse_values: 1-D. Thevalues
of the minibatchSparseTensor
.Output
sparse_shape: 1-D. Theshape
of the minibatchSparseTensor
.
Constructors and Destructors |
|
---|---|
TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype)
|
|
TakeManySparseFromTensorsMap(const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs)
|
Public attributes |
|
---|---|
operation
|
|
sparse_indices
|
|
sparse_shape
|
|
sparse_values
|
Public static functions |
|
---|---|
Container(StringPiece x)
|
|
SharedName(StringPiece x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for TakeManySparseFromTensorsMap. |
Public attributes
operation
Operation operation
اندیس_های پراکنده
::tensorflow::Output sparse_indices
پراکنده_شکل
::tensorflow::Output sparse_shape
مقادیر_کم
::tensorflow::Output sparse_values
توابع عمومی
TakeManySparseFromTensorsMap
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype )
TakeManySparseFromTensorsMap
TakeManySparseFromTensorsMap( const ::tensorflow::Scope & scope, ::tensorflow::Input sparse_handles, DataType dtype, const TakeManySparseFromTensorsMap::Attrs & attrs )
توابع استاتیک عمومی
ظرف
Attrs Container( StringPiece x )
SharedName
Attrs SharedName( StringPiece x )
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2024-12-01 بهوقت ساعت هماهنگ جهانی.