tensorflow:: ops:: SparseSoftmaxCrossEntropyWithLogits
  #include <nn_ops.h>
  Computes softmax cross entropy cost and gradients to backpropagate.
Summary
Unlike SoftmaxCrossEntropyWithLogits, this operation does not accept a matrix of label probabilities, but rather a single label per row of features. This label is considered to have probability 1.0 for the given row.
Inputs are the logits, not probabilities.
Arguments:
- scope: A Scope object
 - features: batch_size x num_classes matrix
 - labels: batch_size vector with values in [0, num_classes). This is the label for the given minibatch entry.
 
Returns:
Outputloss: Per example loss (batch_size vector).Outputbackprop: backpropagated gradients (batch_size x num_classes matrix).
        Constructors and Destructors | 
    |
|---|---|
        SparseSoftmaxCrossEntropyWithLogits(const ::tensorflow::Scope & scope, ::tensorflow::Input features, ::tensorflow::Input labels)
         | 
    
        Public attributes | 
    |
|---|---|
        backprop
       | 
      |
        loss
       | 
      |
        operation
       | 
      |
Public attributes
backprop
::tensorflow::Output backprop
loss
::tensorflow::Output loss
operation
Operation operation
Public functions
SparseSoftmaxCrossEntropyWithLogits
SparseSoftmaxCrossEntropyWithLogits( const ::tensorflow::Scope & scope, ::tensorflow::Input features, ::tensorflow::Input labels )