tensorflow:: ops:: SparseApplyAdagrad
  #include <training_ops.h>
  Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
Summary
That is for rows we have grad for, we update var and accum as follows:
 $$accum += grad * grad$$ 
 
 $$var -= lr * grad * (1 / sqrt(accum))$$ 
  Arguments:
- scope: A Scope object
 - var: Should be from a Variable().
 - accum: Should be from a Variable().
 - lr: Learning rate. Must be a scalar.
 - grad: The gradient.
 - indices: A vector of indices into the first dimension of var and accum.
 
Optional attributes (see Attrs):
- use_locking: If 
True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. 
Returns:
Output: Same as "var".
        Constructors and Destructors | 
    |
|---|---|
        SparseApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices)
         | 
    |
        SparseApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyAdagrad::Attrs & attrs)
         | 
    
        Public attributes | 
    |
|---|---|
        operation
       | 
      |
        out
       | 
      |
        Public functions | 
    |
|---|---|
        node() const 
       | 
      
        ::tensorflow::Node *
         | 
    
        operator::tensorflow::Input() const 
       | 
      
        
         | 
    
        operator::tensorflow::Output() const 
       | 
      
        
         | 
    
        Public static functions | 
    |
|---|---|
        UpdateSlots(bool x)
       | 
      |
        UseLocking(bool x)
       | 
      |
        Structs | 
    |
|---|---|
| 
        tensorflow:: | 
      
         Optional attribute setters for SparseApplyAdagrad.  | 
    
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
SparseApplyAdagrad
SparseApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices )
SparseApplyAdagrad
SparseApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyAdagrad::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UpdateSlots
Attrs UpdateSlots( bool x )
UseLocking
Attrs UseLocking( bool x )