เทนเซอร์โฟลว์:: ปฏิบัติการ:: ใช้ FtrlV2
#include <training_ops.h>
อัปเดต '*var' ตามรูปแบบ Ftrl-proximal
สรุป
grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad * grad linear += grad_with_shrinkage - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var กำลังสอง = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (เครื่องหมาย(เชิงเส้น) * l1 - เชิงเส้น) / กำลังสอง ถ้า |เชิงเส้น| > l1 อื่น 0.0 สะสม = accum_new
ข้อโต้แย้ง:
- ขอบเขต: วัตถุ ขอบเขต
- var: ควรมาจากตัวแปร ()
- accum: ควรมาจากตัวแปร ()
- เชิงเส้น: ควรมาจากตัวแปร ()
- ผู้สำเร็จการศึกษา: การไล่ระดับสี
- lr: ปัจจัยการปรับขนาด ต้องเป็นสเกลาร์
- l1: การทำให้เป็นมาตรฐาน L1 ต้องเป็นสเกลาร์
- l2: การทำให้การหดตัวเป็นปกติของ L2 ต้องเป็นสเกลาร์
- lr_power: ปัจจัยการปรับขนาด ต้องเป็นสเกลาร์
แอ็ตทริบิวต์ทางเลือก (ดู Attrs
):
- use_locking: หากเป็น
True
การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง
ผลตอบแทน:
-
Output
: เหมือนกับ "var"
ตัวสร้างและผู้ทำลาย | |
---|---|
ApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power) | |
ApplyFtrlV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input l2_shrinkage, :: tensorflow::Input lr_power, const ApplyFtrlV2::Attrs & attrs) |
คุณลักษณะสาธารณะ | |
---|---|
operation | |
out |
งานสาธารณะ | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
ฟังก์ชันคงที่สาธารณะ | |
---|---|
MultiplyLinearByLr (bool x) | |
UseLocking (bool x) |
โครงสร้าง | |
---|---|
เทนเซอร์โฟลว์ :: ops :: ApplyFtrlV2 :: Attrs | ตัวตั้งค่าแอ็ตทริบิวต์ทางเลือกสำหรับ ApplyFtrlV2 |
คุณลักษณะสาธารณะ
การดำเนินการ
Operation operation
ออก
::tensorflow::Output out
งานสาธารณะ
ใช้ FtrlV2
ApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power )
ใช้ FtrlV2
ApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power, const ApplyFtrlV2::Attrs & attrs )
โหนด
::tensorflow::Node * node() const
ตัวดำเนินการ::tensorflow::อินพุต
operator::tensorflow::Input() const
ตัวดำเนินการ::tensorflow::เอาต์พุต
operator::tensorflow::Output() const
ฟังก์ชันคงที่สาธารณะ
คูณเชิงเส้นByLr
Attrs MultiplyLinearByLr( bool x )
ใช้ล็อค
Attrs UseLocking( bool x )