Converts each entry in the given tensor to strings.
tf.strings.as_string(
input: _atypes.TensorFuzzingAnnotation[TV_AsString_T],
precision: int = -1,
scientific: bool = False,
shortest: bool = False,
width: int = -1,
fill: str = '',
name=None
) -> _atypes.TensorFuzzingAnnotation[_atypes.String]
Supports many numeric types and boolean.
For Unicode, see the
https://www.tensorflow.org/tutorials/representation/unicode
tutorial.
Examples:
tf.strings.as_string([3, 2])
<tf.Tensor: shape=(2,), dtype=string, numpy=array([b'3', b'2'], dtype=object)>
tf.strings.as_string([3.1415926, 2.71828], precision=2).numpy()
array([b'3.14', b'2.72'], dtype=object)
Args |
input
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , int64 , bfloat16 , uint16 , half , uint32 , uint64 , complex64 , complex128 , bool , variant , string .
|
precision
|
An optional int . Defaults to -1 .
The post-decimal precision to use for floating point numbers.
Only used if precision > -1.
|
scientific
|
An optional bool . Defaults to False .
Use scientific notation for floating point numbers.
|
shortest
|
An optional bool . Defaults to False .
Use shortest representation (either scientific or standard) for
floating point numbers.
|
width
|
An optional int . Defaults to -1 .
Pad pre-decimal numbers to this width.
Applies to both floating point and integer numbers.
Only used if width > -1.
|
fill
|
An optional string . Defaults to "" .
The value to pad if width > -1. If empty, pads with spaces.
Another typical value is '0'. String cannot be longer than 1 character.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type string .
|