tf.compat.v1.metrics.precision_at_thresholds
Stay organized with collections
Save and categorize content based on your preferences.
Computes precision values for different thresholds
on predictions
.
tf.compat.v1.metrics.precision_at_thresholds(
labels,
predictions,
thresholds,
weights=None,
metrics_collections=None,
updates_collections=None,
name=None
)
The precision_at_thresholds
function creates four local variables,
true_positives
, true_negatives
, false_positives
and false_negatives
for various values of thresholds. precision[i]
is defined as the total
weight of values in predictions
above thresholds[i]
whose corresponding
entry in labels
is True
, divided by the total weight of values in
predictions
above thresholds[i]
(true_positives[i] / (true_positives[i] +
false_positives[i])
).
For estimation of the metric over a stream of data, the function creates an
update_op
operation that updates these variables and returns the
precision
.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args |
labels
|
The ground truth values, a Tensor whose dimensions must match
predictions . Will be cast to bool .
|
predictions
|
A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1] .
|
thresholds
|
A python list or tuple of float thresholds in [0, 1] .
|
weights
|
Optional Tensor whose rank is either 0, or the same rank as
labels , and must be broadcastable to labels (i.e., all dimensions must
be either 1 , or the same as the corresponding labels dimension).
|
metrics_collections
|
An optional list of collections that auc should be
added to.
|
updates_collections
|
An optional list of collections that update_op should
be added to.
|
name
|
An optional variable_scope name.
|
Returns |
precision
|
A float Tensor of shape [len(thresholds)] .
|
update_op
|
An operation that increments the true_positives ,
true_negatives , false_positives and false_negatives variables that
are used in the computation of precision .
|
Raises |
ValueError
|
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions , or if
either metrics_collections or updates_collections are not a list or
tuple.
|
RuntimeError
|
If eager execution is enabled.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[]]