Elementwise computes the bitwise left-shift of x
and y
.
tf.bitwise.left_shift(
x: _atypes.TensorFuzzingAnnotation[TV_LeftShift_T],
y: _atypes.TensorFuzzingAnnotation[TV_LeftShift_T],
name=None
) -> _atypes.TensorFuzzingAnnotation[TV_LeftShift_T]
If y
is negative, or greater than or equal to the width of x
in bits the
result is implementation defined.
Example:
import tensorflow as tf
from tensorflow.python.ops import bitwise_ops
import numpy as np
dtype_list = [tf.int8, tf.int16, tf.int32, tf.int64]
for dtype in dtype_list:
lhs = tf.constant([-1, -5, -3, -14], dtype=dtype)
rhs = tf.constant([5, 0, 7, 11], dtype=dtype)
left_shift_result = bitwise_ops.left_shift(lhs, rhs)
print(left_shift_result)
# This will print:
# tf.Tensor([ -32 -5 -128 0], shape=(4,), dtype=int8)
# tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int16)
# tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int32)
# tf.Tensor([ -32 -5 -384 -28672], shape=(4,), dtype=int64)
lhs = np.array([-2, 64, 101, 32], dtype=np.int8)
rhs = np.array([-1, -5, -3, -14], dtype=np.int8)
bitwise_ops.left_shift(lhs, rhs)
# <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)>
Args | |
---|---|
x
|
A Tensor . Must be one of the following types: int8 , int16 , int32 , int64 , uint8 , uint16 , uint32 , uint64 .
|
y
|
A Tensor . Must have the same type as x .
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
A Tensor . Has the same type as x .
|