View source on GitHub
|
Max pooling operation for 1D temporal data.
tf.keras.layers.MaxPooling1D(
pool_size=2,
strides=None,
padding='valid',
data_format='channels_last',
**kwargs
)
Downsamples the input representation by taking the maximum value over a
spatial window of size pool_size. The window is shifted by strides. The
resulting output, when using the "valid" padding option, has a shape of:
output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is:
output_shape = input_shape / strides
For example, for strides=1 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,strides=1, padding='valid')max_pool_1d(x)<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=array([[[2.],[3.],[4.],[5.]]], dtype=float32)>
For example, for strides=2 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,strides=2, padding='valid')max_pool_1d(x)<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=array([[[2.],[4.]]], dtype=float32)>
For example, for strides=1 and padding="same":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,strides=1, padding='same')max_pool_1d(x)<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[2.],[3.],[4.],[5.],[5.]]], dtype=float32)>
Input shape | |
|---|---|
|
Output shape | |
|---|---|
|
View source on GitHub