When self_normalized = True, the Amari-alpha Csiszar-function is:
f(u) = { -log(u) + (u - 1), alpha = 0
{ u log(u) - (u - 1), alpha = 1
{ [(u**alpha - 1) - alpha (u - 1)] / (alpha (alpha - 1)), otherwise
When self_normalized = False the (u - 1) terms are omitted.
For more information, see:
A. Cichocki and S. Amari. "Families of Alpha-Beta-and GammaDivergences:
Flexible and Robust Measures of Similarities." Entropy, vol. 12, no. 6, pp.
1532-1568, 2010.
Args
logu
float-like Tensor representing log(u) from above.
alpha
float-like Python scalar. (See Mathematical Details for meaning.)
self_normalized
Python bool indicating whether f'(u=1)=0. When
f'(u=1)=0 the implied Csiszar f-Divergence remains non-negative even
when p, q are unnormalized measures.
name
Python str name prefixed to Ops created by this function.
Returns
amari_alpha_of_u
float-like Tensor of the Csiszar-function evaluated
at u = exp(logu).
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-11-21 UTC."],[],[]]