Module: tfp.experimental.nn
Stay organized with collections
Save and categorize content based on your preferences.
Tools for building neural networks.
Modules
initializers
module: Initializer functions for building neural networks.
losses
module: Loss functions for neural networks.
util
module: Utilitity functions for building neural networks.
Classes
class Affine
: Basic affine layer.
class AffineVariationalFlipout
: Densely-connected layer class with Flipout estimator.
class AffineVariationalReparameterization
: Densely-connected layer class with reparameterization estimator.
class AffineVariationalReparameterizationLocal
: Densely-connected layer class with local reparameterization estimator.
class Convolution
: Convolution layer.
class ConvolutionTranspose
: ConvolutionTranspose layer.
class ConvolutionTransposeVariationalFlipout
: ConvolutionTranspose layer class with Flipout estimator.
class ConvolutionTransposeVariationalReparameterization
: ConvolutionTranspose layer class with reparameterization estimator.
class ConvolutionV2
: Convolution layer.
class ConvolutionVariationalFlipout
: Convolution layer class with Flipout estimator.
class ConvolutionVariationalFlipoutV2
: Convolution layer class with Flipout estimator.
class ConvolutionVariationalReparameterization
: Convolution layer class with reparameterization estimator.
class ConvolutionVariationalReparameterizationV2
: Convolution layer class with reparameterization estimator.
class Layer
: A callable
tf.Module
.
class Sequential
: A Layer
characterized by iteratively given functions.
class VariationalLayer
: Base class for all variational layers.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-11-21 UTC."],[],[],null,["# Module: tfp.experimental.nn\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/nn/__init__.py) |\n\nTools for building neural networks.\n\nModules\n-------\n\n[`initializers`](../../tfp/experimental/nn/initializers) module: Initializer functions for building neural networks.\n\n[`losses`](../../tfp/experimental/nn/losses) module: Loss functions for neural networks.\n\n[`util`](../../tfp/experimental/nn/util) module: Utilitity functions for building neural networks.\n\nClasses\n-------\n\n[`class Affine`](../../tfp/experimental/nn/Affine): Basic affine layer.\n\n[`class AffineVariationalFlipout`](../../tfp/experimental/nn/AffineVariationalFlipout): Densely-connected layer class with Flipout estimator.\n\n[`class AffineVariationalReparameterization`](../../tfp/experimental/nn/AffineVariationalReparameterization): Densely-connected layer class with reparameterization estimator.\n\n[`class AffineVariationalReparameterizationLocal`](../../tfp/experimental/nn/AffineVariationalReparameterizationLocal): Densely-connected layer class with local reparameterization estimator.\n\n[`class Convolution`](../../tfp/experimental/nn/Convolution): Convolution layer.\n\n[`class ConvolutionTranspose`](../../tfp/experimental/nn/ConvolutionTranspose): ConvolutionTranspose layer.\n\n[`class ConvolutionTransposeVariationalFlipout`](../../tfp/experimental/nn/ConvolutionTransposeVariationalFlipout): ConvolutionTranspose layer class with Flipout estimator.\n\n[`class ConvolutionTransposeVariationalReparameterization`](../../tfp/experimental/nn/ConvolutionTransposeVariationalReparameterization): ConvolutionTranspose layer class with reparameterization estimator.\n\n[`class ConvolutionV2`](../../tfp/experimental/nn/ConvolutionV2): Convolution layer.\n\n[`class ConvolutionVariationalFlipout`](../../tfp/experimental/nn/ConvolutionVariationalFlipout): Convolution layer class with Flipout estimator.\n\n[`class ConvolutionVariationalFlipoutV2`](../../tfp/experimental/nn/ConvolutionVariationalFlipoutV2): Convolution layer class with Flipout estimator.\n\n[`class ConvolutionVariationalReparameterization`](../../tfp/experimental/nn/ConvolutionVariationalReparameterization): Convolution layer class with reparameterization estimator.\n\n[`class ConvolutionVariationalReparameterizationV2`](../../tfp/experimental/nn/ConvolutionVariationalReparameterizationV2): Convolution layer class with reparameterization estimator.\n\n[`class Layer`](../../tfp/experimental/nn/Layer): A `callable` [`tf.Module`](https://www.tensorflow.org/api_docs/python/tf/Module).\n\n[`class Sequential`](../../tfp/experimental/nn/Sequential): A `Layer` characterized by iteratively given functions.\n\n[`class VariationalLayer`](../../tfp/experimental/nn/VariationalLayer): Base class for all variational layers."]]