Module: tfp.experimental.vi
Stay organized with collections
Save and categorize content based on your preferences.
Experimental methods and objectives for variational inference.
Modules
util
module: Experimental methods and objectives for variational inference.
Functions
build_affine_surrogate_posterior(...)
: Builds a joint variational posterior with a given event_shape
.
build_affine_surrogate_posterior_from_base_distribution(...)
: Builds a variational posterior by linearly transforming base distributions.
build_affine_surrogate_posterior_from_base_distribution_stateless(...)
: Builds a variational posterior by linearly transforming base distributions.
build_affine_surrogate_posterior_stateless(...)
: Builds a joint variational posterior with a given event_shape
.
build_asvi_surrogate_posterior(...)
: Builds a structured surrogate posterior inspired by conjugate updating.
build_asvi_surrogate_posterior_stateless(...)
: Builds a structured surrogate posterior inspired by conjugate updating.
build_factored_surrogate_posterior(...)
: Builds a joint variational posterior that factors over model variables.
build_factored_surrogate_posterior_stateless(...)
: Builds a joint variational posterior that factors over model variables.
build_split_flow_surrogate_posterior(...)
: Builds a joint variational posterior by splitting a normalizing flow.
Other Members |
ASVI_DEFAULT_PRIOR_SUBSTITUTION_RULES
|
((<class 'tensorflow_probability.python.distributions.half_normal.HalfNormal'>,
<function <lambda>>),
(<class 'tensorflow_probability.python.distributions.uniform.Uniform'>,
<function <lambda>>),
(<class 'tensorflow_probability.python.distributions.exponential.Exponential'>,
<function <lambda>>),
(<class 'tensorflow_probability.python.distributions.chi2.Chi2'>,
<function <lambda>>))
|
ASVI_DEFAULT_SURROGATE_RULES
|
((<function <lambda>>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>),
(<class 'tensorflow_probability.python.distributions.sample.Sample'>,
<function _asvi_surrogate_for_sample>),
(<class 'tensorflow_probability.python.distributions.independent.Independent'>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>),
(<function <lambda>>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>),
(<class 'tensorflow_probability.python.distributions.markov_chain.MarkovChain'>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>))
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-11-21 UTC."],[],[]]