tensorflow:: ops:: SparseSegmentSum
  #include <math_ops.h>
  Computes the sum along sparse segments of a tensor.
Summary
Read the section on segmentation for an explanation of segments.
Like SegmentSum, but segment_ids can have rank less than data's first dimension, selecting a subset of dimension 0, specified by indices.
For example:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
# Select two rows, one segment. tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0])) # => [[0 0 0 0]]
# Select two rows, two segment. tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1])) # => [[ 1 2 3 4] # [-1 -2 -3 -4]]
# Select all rows, two segments. tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1])) # => [[0 0 0 0] # [5 6 7 8]]
# Which is equivalent to: tf.segment_sum(c, tf.constant([0, 0, 1]))
Arguments:
- scope: A Scope object
 - indices: A 1-D tensor. Has same rank as 
segment_ids. - segment_ids: A 1-D tensor. Values should be sorted and can be repeated.
 
Returns:
Output: Has same shape as data, except for dimension 0 which has sizek, the number of segments.
        Constructors and Destructors | 
    |
|---|---|
        SparseSegmentSum(const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input indices, ::tensorflow::Input segment_ids)
         | 
    
        Public attributes | 
    |
|---|---|
        operation
       | 
      |
        output
       | 
      |
        Public functions | 
    |
|---|---|
        node() const 
       | 
      
        ::tensorflow::Node *
         | 
    
        operator::tensorflow::Input() const 
       | 
      
        
         | 
    
        operator::tensorflow::Output() const 
       | 
      
        
         | 
    
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
SparseSegmentSum
SparseSegmentSum( const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input indices, ::tensorflow::Input segment_ids )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const