tensorflow:: ops:: ResourceSparseApplyFtrl
  #include <training_ops.h>
  Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Summary
That is for rows we have grad for, we update var, accum and linear as follows: accum_new = accum + grad * grad linear += grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 accum = accum_new
Arguments:
- scope: A Scope object
 - var: Should be from a Variable().
 - accum: Should be from a Variable().
 - linear: Should be from a Variable().
 - grad: The gradient.
 - indices: A vector of indices into the first dimension of var and accum.
 - lr: Scaling factor. Must be a scalar.
 - l1: L1 regularization. Must be a scalar.
 - l2: L2 regularization. Must be a scalar.
 - lr_power: Scaling factor. Must be a scalar.
 
Optional attributes (see Attrs):
- use_locking: If 
True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. 
Returns:
- the created 
Operation 
        Constructors and Destructors | 
    |
|---|---|
        ResourceSparseApplyFtrl(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power)
         | 
    |
        ResourceSparseApplyFtrl(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const ResourceSparseApplyFtrl::Attrs & attrs)
         | 
    
        Public attributes | 
    |
|---|---|
        operation
       | 
      |
        Public functions | 
    |
|---|---|
        operator::tensorflow::Operation() const 
       | 
      
        
         | 
    
        Public static functions | 
    |
|---|---|
        UseLocking(bool x)
       | 
      |
        Structs | 
    |
|---|---|
| 
        tensorflow:: | 
      
         Optional attribute setters for ResourceSparseApplyFtrl.  | 
    
Public attributes
operation
Operation operation
Public functions
ResourceSparseApplyFtrl
ResourceSparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
ResourceSparseApplyFtrl
ResourceSparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const ResourceSparseApplyFtrl::Attrs & attrs )
operator::tensorflow::Operation
operator::tensorflow::Operation() const
Public static functions
UseLocking
Attrs UseLocking( bool x )