tensorflow::ops::ResourceSparseApplyAdagrad

#include <training_ops.h>

Update relevant entries in '*var' and '*accum' according to the adagrad scheme.

That is for rows we have grad for, we update var and accum as follows: accum += grad * grad var -= lr * grad * (1 / sqrt(accum))

Arguments:

  • scope: A Scope object
  • var: Should be from a Variable().
  • accum: Should be from a Variable().
  • lr: Learning rate. Must be a scalar.
  • grad: The gradient.
  • indices: A vector of indices into the first dimension of var and accum.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Public attributes

operation

Public functions

operator::tensorflow::Operation() const

Public static functions

UpdateSlots(bool x)
UseLocking(bool x)

Public attributes

operation

Operation operation

Public functions

ResourceSparseApplyAdagrad

 ResourceSparseApplyAdagrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices
)

ResourceSparseApplyAdagrad

 ResourceSparseApplyAdagrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input lr,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  const ResourceSparseApplyAdagrad::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

UpdateSlots

Attrs UpdateSlots(
  bool x
)

UseLocking

Attrs UseLocking(
  bool x
)