tensorflow::ops::ResourceSparseApplyAdagrad
#include <training_ops.h>
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
Summary
That is for rows we have grad for, we update var and accum as follows: accum += grad * grad var -= lr * grad * (1 / sqrt(accum))
Arguments:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- lr: Learning rate. Must be a scalar.
- grad: The gradient.
- indices: A vector of indices into the first dimension of var and accum.
Optional attributes (see Attrs
):
- use_locking: If
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
- the created
Operation
Constructors and Destructors |
|
---|---|
ResourceSparseApplyAdagrad(const ::
|
|
ResourceSparseApplyAdagrad(const ::
|
Public functions |
|
---|---|
operator::
|
|
Public static functions |
|
---|---|
UpdateSlots(bool x)
|
|
UseLocking(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for ResourceSparseApplyAdagrad. |
Public attributes
operation
Operation operation
Public functions
ResourceSparseApplyAdagrad
ResourceSparseApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices )
ResourceSparseApplyAdagrad
ResourceSparseApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, ::tensorflow::Input indices, const ResourceSparseApplyAdagrad::Attrs & attrs )