tensorflow:: ops:: SparseApplyFtrlV2
  #include <training_ops.h>
  Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Summary
That is for rows we have grad for, we update var, accum and linear as follows: grad_with_shrinkage = grad + 2 * l2_shrinkage * var accum_new = accum + grad_with_shrinkage * grad_with_shrinkage linear += grad_with_shrinkage + (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 accum = accum_new
Arguments:
- scope: A Scope object
 - var: Should be from a Variable().
 - accum: Should be from a Variable().
 - linear: Should be from a Variable().
 - grad: The gradient.
 - indices: A vector of indices into the first dimension of var and accum.
 - lr: Scaling factor. Must be a scalar.
 - l1: L1 regularization. Must be a scalar.
 - l2: L2 shrinkage regulariation. Must be a scalar.
 - lr_power: Scaling factor. Must be a scalar.
 
Optional attributes (see Attrs):
- use_locking: If 
True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. 
Returns:
Output: Same as "var".
        Constructors and Destructors | 
    |
|---|---|
        SparseApplyFtrlV2(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power)
         | 
    |
        SparseApplyFtrlV2(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs)
         | 
    
        Public attributes | 
    |
|---|---|
        operation
       | 
      |
        out
       | 
      |
        Public functions | 
    |
|---|---|
        node() const 
       | 
      
        ::tensorflow::Node *
         | 
    
        operator::tensorflow::Input() const 
       | 
      
        
         | 
    
        operator::tensorflow::Output() const 
       | 
      
        
         | 
    
        Public static functions | 
    |
|---|---|
        UseLocking(bool x)
       | 
      |
        Structs | 
    |
|---|---|
| 
        tensorflow:: | 
      
         Optional attribute setters for SparseApplyFtrlV2.  | 
    
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
SparseApplyFtrlV2
SparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power )
SparseApplyFtrlV2
SparseApplyFtrlV2( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input l2_shrinkage, ::tensorflow::Input lr_power, const SparseApplyFtrlV2::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UseLocking
Attrs UseLocking( bool x )