|  View source on GitHub | 
Builds datasets from feature specs.
Inherits From: AbstractDatasetBuilder
tfr.keras.pipeline.BaseDatasetBuilder(
    context_feature_spec: Dict[str, Union[tf.io.FixedLenFeature, tf.io.VarLenFeature, tf.io.
        RaggedFeature]],
    example_feature_spec: Dict[str, Union[tf.io.FixedLenFeature, tf.io.VarLenFeature, tf.io.
        RaggedFeature]],
    training_only_example_spec: Dict[str, Union[tf.io.FixedLenFeature, tf.io.VarLenFeature, tf.io.
        RaggedFeature]],
    mask_feature_name: str,
    hparams: tfr.keras.pipeline.DatasetHparams,
    training_only_context_spec: Optional[Dict[str, Union[tf.io.FixedLenFeature, tf.io.VarLenFeature, tf.io.
        RaggedFeature]]] = None
)
The BaseDatasetBuilder class is an abstract class inherit from
AbstractDatasetBuilder to serve training and validation datasets and
signatures for training ModelFitPipeline.
To be implemented by subclasses:
- _features_and_labels(): Contains the logic to map a dict of tensors of dataset to feature tensors and label tensors.
Example subclass implementation:
class SimpleDatasetBuilder(BaseDatasetBuilder):
  def _features_and_labels(self, features):
    label = features.pop("utility")
    return features, label
| Args | |
|---|---|
| context_feature_spec | Maps context (aka, query) names to feature specs. | 
| example_feature_spec | Maps example (aka, document) names to feature specs. | 
| training_only_example_spec | Feature specs used for training only like labels and per-example weights. | 
| mask_feature_name | If set, populates the feature dictionary with this name
and the coresponding value is a tf.boolTensor of shape [batch_size,
list_size] indicating the actual example is padded or not. | 
| hparams | A dict containing model hyperparameters. | 
| training_only_context_spec | Feature specs used for training only per-list weights. | 
Methods
build_signatures
build_signatures(
    model: tf.keras.Model
) -> Any
See AbstractDatasetBuilder.
build_train_dataset
build_train_dataset() -> tf.data.Dataset
See AbstractDatasetBuilder.
build_valid_dataset
build_valid_dataset() -> tf.data.Dataset
See AbstractDatasetBuilder.