View source on GitHub
|
Computes the Gumbel approximate NDCG loss between y_true and y_pred.
Inherits From: ApproxNDCGLoss
tfr.keras.losses.GumbelApproxNDCGLoss(
reduction: tf.losses.Reduction = tf.losses.Reduction.AUTO,
name: Optional[str] = None,
lambda_weight: Optional[losses_impl._LambdaWeight] = None,
temperature: float = 0.1,
sample_size: int = 8,
gumbel_temperature: float = 1.0,
seed: Optional[int] = None,
ragged: bool = False
)
Implementation of Gumbel ApproxNDCG loss (Bruch et al, 2020).
This loss is the same as tfr.keras.losses.ApproxNDCGLoss but where logits
are sampled from the Gumbel distribution:
y_new_pred ~ Gumbel(y_pred, 1 / temperature)
Standalone usage:
tf.random.set_seed(42)y_true = [[1., 0.]]y_pred = [[0.6, 0.8]]loss = tfr.keras.losses.GumbelApproxNDCGLoss(seed=42)loss(y_true, y_pred).numpy()-0.8160851
# Using a higher gumbel temperatureloss = tfr.keras.losses.GumbelApproxNDCGLoss(gumbel_temperature=2.0,seed=42)loss(y_true, y_pred).numpy()-0.7583889
# Using ragged tensorsy_true = tf.ragged.constant([[1., 0.], [0., 1., 0.]])y_pred = tf.ragged.constant([[0.6, 0.8], [0.5, 0.8, 0.4]])loss = tfr.keras.losses.GumbelApproxNDCGLoss(seed=42, ragged=True)loss(y_true, y_pred).numpy()-0.6987189
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tfr.keras.losses.GumbelApproxNDCGLoss())
Definition:
\[\mathcal{L}(\{y\}, \{s\}) = \text{ApproxNDCGLoss}(\{y\}, \{z\})\]
where
\[ z \sim \text{Gumbel}(s, \beta)\\ p(z) = e^{-t-e^{-t} }\\ t = \beta(z - s)\\ \beta = \frac{1}{\text{temperature} } \]
References | |
|---|---|
Args | |
|---|---|
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO. AUTO indicates that the
reduction option will be determined by the usage context. For
almost all cases this defaults to SUM_OVER_BATCH_SIZE. When
used under a tf.distribute.Strategy, except via
Model.compile() and Model.fit(), using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see this
custom training tutorial
for more details.
|
name
|
Optional name for the instance. |
Methods
from_config
@classmethodfrom_config( config, custom_objects=None )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A Loss instance.
|
get_config
get_config() -> Dict[str, Any]
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true: tfr.keras.model.TensorLike,
y_pred: tfr.keras.model.TensorLike,
sample_weight: Optional[utils.TensorLike] = None
) -> tf.Tensor
See _RankingLoss.
View source on GitHub