View source on GitHub
|
Computes approximate NDCG loss between y_true and y_pred.
tfr.keras.losses.ApproxNDCGLoss(
reduction: tf.losses.Reduction = tf.losses.Reduction.AUTO,
name: Optional[str] = None,
lambda_weight: Optional[losses_impl._LambdaWeight] = None,
temperature: float = 0.1,
ragged: bool = False
)
Implementation of ApproxNDCG loss (Qin et al, 2008;
Bruch et al, 2019). This loss is an approximation for
tfr.keras.metrics.NDCGMetric. It replaces the non-differentiable ranking
function in NDCG with a differentiable approximation based on the logistic
function.
For each list of scores s in y_pred and list of labels y in y_true:
loss = sum_i (2^y_i - 1) / log_2(1 + approxrank(s_i))
approxrank(s_i) = 1 + sum_j (1 / (1 + exp(-(s_j - s_i) / temperature)))
Standalone usage:
y_true = [[1., 0.]]y_pred = [[0.6, 0.8]]loss = tfr.keras.losses.ApproxNDCGLoss()loss(y_true, y_pred).numpy()-0.655107
# Using ragged tensorsy_true = tf.ragged.constant([[1., 0.], [0., 1., 0.]])y_pred = tf.ragged.constant([[0.6, 0.8], [0.5, 0.8, 0.4]])loss = tfr.keras.losses.ApproxNDCGLoss(ragged=True)loss(y_true, y_pred).numpy()-0.80536866
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tfr.keras.losses.ApproxNDCGLoss())
Definition:
\[ \mathcal{L}(\{y\}, \{s\}) = - \frac{1}{\text{DCG}(y, y)} \sum_{i} \frac{2^{y_i} - 1}{\log_2(1 + \text{rank}_i)} \]
where:
\[ \text{rank}_i = 1 + \sum_{j \neq i} \frac{1}{1 + \exp\left(\frac{-(s_j - s_i)}{\text{temperature} }\right)} \]
References | |
|---|---|
Args | |
|---|---|
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO. AUTO indicates that the
reduction option will be determined by the usage context. For
almost all cases this defaults to SUM_OVER_BATCH_SIZE. When
used under a tf.distribute.Strategy, except via
Model.compile() and Model.fit(), using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see this
custom training tutorial
for more details.
|
name
|
Optional name for the instance. |
Methods
from_config
@classmethodfrom_config( config, custom_objects=None )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A Loss instance.
|
get_config
get_config() -> Dict[str, Any]
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true: tfr.keras.model.TensorLike,
y_pred: tfr.keras.model.TensorLike,
sample_weight: Optional[utils.TensorLike] = None
) -> tf.Tensor
See tf.keras.losses.Loss.
View source on GitHub