tfg.geometry.representation.mesh.sampler.weighted_random_sample_triangle_mesh
Stay organized with collections
Save and categorize content based on your preferences.
Performs a face probability weighted random sampling of a tri mesh.
tfg.geometry.representation.mesh.sampler.weighted_random_sample_triangle_mesh(
vertex_attributes: type_alias.TensorLike,
faces: type_alias.TensorLike,
num_samples: int,
face_weights: type_alias.TensorLike,
seed: Optional[type_alias.TensorLike] = None,
stateless: bool = False,
name: str = 'weighted_random_sample_triangle_mesh'
) -> Tuple[type_alias.TensorLike, type_alias.TensorLike]
Note |
In the following, A1 to An are optional batch dimensions.
|
Args |
vertex_attributes
|
A float tensor of shape [A1, ..., An, V, D] , where V
is the number of vertices, and D is dimensionality of each vertex.
|
faces
|
A int tensor of shape [A1, ..., An, F, 3] , where F is the number
of faces.
|
num_samples
|
A int 0-D tensor denoting number of samples to be drawn from
each mesh.
|
face_weights
|
A float tensor of shape `[A1, ..., An, F] , denoting
unnormalized sampling probability of each face, where F is the number of
faces.
|
seed
|
Optional random seed.
|
stateless
|
Optional flag to use stateless random sampler. If stateless=True,
then seed must be provided as shape [2] int tensor. Stateless random
sampling is useful for testing to generate same sequence across calls.
|
name
|
Name for op. Defaults to "weighted_random_sample_triangle_mesh".
|
Returns |
sample_points
|
A float tensor of shape [A1, ..., An, num_samples, D] ,
where D is dimensionality of each sampled point.
|
sample_face_indices
|
A int tensor of shape [A1, ..., An, num_samples] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-10-28 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-10-28 UTC."],[],[],null,["# tfg.geometry.representation.mesh.sampler.weighted_random_sample_triangle_mesh\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/geometry/representation/mesh/sampler.py#L247-L332) |\n\nPerforms a face probability weighted random sampling of a tri mesh. \n\n tfg.geometry.representation.mesh.sampler.weighted_random_sample_triangle_mesh(\n vertex_attributes: type_alias.TensorLike,\n faces: type_alias.TensorLike,\n num_samples: int,\n face_weights: type_alias.TensorLike,\n seed: Optional[type_alias.TensorLike] = None,\n stateless: bool = False,\n name: str = 'weighted_random_sample_triangle_mesh'\n ) -\u003e Tuple[type_alias.TensorLike, type_alias.TensorLike]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Note ---- ||\n|---|---|\n| In the following, A1 to An are optional batch dimensions. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `vertex_attributes` | A `float` tensor of shape `[A1, ..., An, V, D]`, where V is the number of vertices, and D is dimensionality of each vertex. |\n| `faces` | A `int` tensor of shape `[A1, ..., An, F, 3]`, where F is the number of faces. |\n| `num_samples` | A `int` 0-D tensor denoting number of samples to be drawn from each mesh. |\n| `face_weights` | A `float` tensor of shape \\``[A1, ..., An, F]`, denoting unnormalized sampling probability of each face, where F is the number of faces. |\n| `seed` | Optional random seed. |\n| `stateless` | Optional flag to use stateless random sampler. If stateless=True, then seed must be provided as shape `[2]` int tensor. Stateless random sampling is useful for testing to generate same sequence across calls. |\n| `name` | Name for op. Defaults to \"weighted_random_sample_triangle_mesh\". |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----------------------|-------------------------------------------------------------------------------------------------------------|\n| `sample_points` | A `float` tensor of shape `[A1, ..., An, num_samples, D]`, where D is dimensionality of each sampled point. |\n| `sample_face_indices` | A `int` tensor of shape `[A1, ..., An, num_samples]`. |\n\n\u003cbr /\u003e"]]