tfm.optimization.PolynomialWarmUp
Stay organized with collections
Save and categorize content based on your preferences.
Applies polynomial warmup schedule on a given learning rate decay schedule.
tfm.optimization.PolynomialWarmUp(
after_warmup_lr_sched: Union[tf.keras.optimizers.schedules.LearningRateSchedule, float],
warmup_steps: int,
power: float = 1.0,
name: str = 'PolynomialWarmup'
)
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule
from its config.
Args |
config
|
Output of get_config() .
|
Returns |
A LearningRateSchedule instance.
|
get_config
View source
get_config() -> Mapping[str, Any]
__call__
View source
__call__(
step
)
Call self as a function.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-02-02 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-02-02 UTC."],[],[]]