View source on GitHub |
Optimizer that computes an exponential moving average of the variables.
tfm.optimization.ExponentialMovingAverage(
optimizer: tf.keras.optimizers.Optimizer,
trainable_weights_only: bool = True,
average_decay: float = 0.99,
start_step: int = 0,
dynamic_decay: bool = True,
name: str = 'ExponentialMovingAverage',
**kwargs
)
Empirically it has been found that using the moving average of the trained parameters of a deep network is better than using its trained parameters directly. This optimizer allows you to compute this moving average and swap the variables at save time so that any code outside of the training loop will use by default the average values instead of the original ones.
Example of usage for training:
opt = tf.keras.optimizers.SGD(learning_rate)
opt = ExponentialMovingAverage(opt)
opt.shadow_copy(model)
At test time, swap the shadow variables to evaluate on the averaged weights:
opt.swap_weights()
# Test eval the model here
opt.swap_weights()
Args | |
---|---|
optimizer
|
tf.keras.optimizers.Optimizer that will be
used to compute and apply gradients.
|
trainable_weights_only
|
'bool', if True, only model trainable weights will be updated. Otherwise, all model weights will be updated. This mainly affects batch normalization parameters. |
average_decay
|
float. Decay to use to maintain the moving averages of trained variables. |
start_step
|
int. What step to start the moving average. |
dynamic_decay
|
bool. Whether to change the decay based on the number
of optimizer updates. Decay will start at 0.1 and gradually increase
up to average_decay after each optimizer update. This behavior is
similar to tf.train.ExponentialMovingAverage in TF 1.x.
|
name
|
Optional name for the operations created when applying gradients. Defaults to "moving_average". |
**kwargs
|
keyword arguments. Allowed to be {clipnorm ,
clipvalue , lr , decay }.
|
Attributes | |
---|---|
clipnorm
|
float or None . If set, clips gradients to a maximum norm.
|
clipvalue
|
float or None . If set, clips gradients to a maximum value.
|
global_clipnorm
|
float or None .
If set, clips gradients to a maximum norm. Check |
has_shadow_copy
|
Whether this optimizer has created shadow variables. |
iterations
|
Variable. The number of training steps this Optimizer has run. |
learning_rate
|
|
lr
|
|
weights
|
Returns variables of this Optimizer based on the order created. |
Methods
add_slot
add_slot(
var, slot_name, initializer='zeros', shape=None
)
Add a new slot variable for var
.
A slot variable is an additional variable associated with var
to
train. It is allocated and managed by optimizers, e.g. Adam
.
Args | |
---|---|
var
|
a Variable object.
|
slot_name
|
name of the slot variable. |
initializer
|
initializer of the slot variable |
shape
|
(Optional) shape of the slot variable. If not set, it will
default to the shape of var .
|
Returns | |
---|---|
A slot variable. |
add_weight
add_weight(
name,
shape,
dtype=None,
initializer='zeros',
trainable=None,
synchronization=tf.VariableSynchronization.AUTO,
aggregation=tf.VariableAggregation.NONE
)
apply_gradients
apply_gradients(
grads_and_vars, name: Optional[str] = None
)
Apply gradients to variables.
This is the second part of minimize()
. It returns an Operation
that
applies gradients.
The method sums gradients from all replicas in the presence of
tf.distribute.Strategy
by default. You can aggregate gradients
yourself by passing experimental_aggregate_gradients=False
.
Example:
grads = tape.gradient(loss, vars)
grads = tf.distribute.get_replica_context().all_reduce('sum', grads)
# Processing aggregated gradients.
optimizer.apply_gradients(zip(grads, vars),
experimental_aggregate_gradients=False)
Args | |
---|---|
grads_and_vars
|
List of (gradient, variable) pairs. |
name
|
Optional name for the returned operation. When None , uses the
name passed to the Optimizer constructor. Defaults to None .
|
experimental_aggregate_gradients
|
Whether to sum gradients from
different replicas in the presence of tf.distribute.Strategy . If
False, it's user responsibility to aggregate the gradients. Default
to True .
|
Returns | |
---|---|
An Operation that applies the specified gradients. The iterations
will be automatically increased by 1.
|
Raises | |
---|---|
TypeError
|
If grads_and_vars is malformed.
|
ValueError
|
If none of the variables have gradients. |
RuntimeError
|
If called in a cross-replica context. |
assign_average_vars
assign_average_vars(
var_list: List[tf.Variable]
)
Assign variables in var_list with their respective averages.
Args | |
---|---|
var_list
|
List of model variables to be assigned to their average. |
Returns | |
---|---|
assign_op
|
The op corresponding to the assignment operation of variables to their average. |
from_config
@classmethod
from_config( config, custom_objects=None )
Creates an optimizer from its config.
This method is the reverse of get_config
,
capable of instantiating the same optimizer from the config
dictionary.
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
custom_objects
|
A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter. |
Returns | |
---|---|
An optimizer instance. |
get_config
get_config()
Returns the config of the optimizer.
An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.
Returns | |
---|---|
Python dictionary. |
get_gradients
get_gradients(
loss, params
)
Returns gradients of loss
with respect to params
.
Should be used only in legacy v1 graph mode.
Args | |
---|---|
loss
|
Loss tensor. |
params
|
List of variables. |
Returns | |
---|---|
List of gradient tensors. |
Raises | |
---|---|
ValueError
|
In case any gradient cannot be computed (e.g. if gradient function not implemented). |
get_slot
get_slot(
var, slot_name
)
get_slot_names
get_slot_names()
A list of names for this optimizer's slots.
get_updates
get_updates(
loss, params
)
get_weights
get_weights()
Returns the current weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function returns the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they were created. The returned list can in turn be used to load state into similarly parameterized optimizers.
For example, the RMSprop optimizer for this simple model returns a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
opt = tf.keras.optimizers.legacy.RMSprop()
m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
m.compile(opt, loss='mse')
data = np.arange(100).reshape(5, 20)
labels = np.zeros(5)
results = m.fit(data, labels) # Training.
len(opt.get_weights())
3
Returns | |
---|---|
Weights values as a list of numpy arrays. |
minimize
minimize(
loss, var_list, grad_loss=None, name=None, tape=None
)
Minimize loss
by updating var_list
.
This method simply computes gradient using tf.GradientTape
and calls
apply_gradients()
. If you want to process the gradient before applying
then call tf.GradientTape
and apply_gradients()
explicitly instead
of using this function.
Args | |
---|---|
loss
|
Tensor or callable. If a callable, loss should take no
arguments and return the value to minimize. If a Tensor , the
tape argument must be passed.
|
var_list
|
list or tuple of Variable objects to update to minimize
loss , or a callable returning the list or tuple of Variable
objects. Use callable when the variable list would otherwise be
incomplete before minimize since the variables are created at the
first time loss is called.
|
grad_loss
|
(Optional). A Tensor holding the gradient computed for
loss .
|
name
|
(Optional) str. Name for the returned operation. |
tape
|
(Optional) tf.GradientTape . If loss is provided as a
Tensor , the tape that computed the loss must be provided.
|
Returns | |
---|---|
An Operation that updates the variables in var_list . The
iterations will be automatically increased by 1.
|
Raises | |
---|---|
ValueError
|
If some of the variables are not Variable objects.
|
set_weights
set_weights(
weights
)
Set the weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function takes the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they are created. The passed values are used to set the new state of the optimizer.
For example, the RMSprop optimizer for this simple model takes a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
opt = tf.keras.optimizers.legacy.RMSprop()
m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
m.compile(opt, loss='mse')
data = np.arange(100).reshape(5, 20)
labels = np.zeros(5)
results = m.fit(data, labels) # Training.
new_weights = [np.array(10), np.ones([20, 10]), np.zeros([10])]
opt.set_weights(new_weights)
opt.iterations
<tf.Variable 'RMSprop/iter:0' shape=() dtype=int64, numpy=10>
Args | |
---|---|
weights
|
weight values as a list of numpy arrays. |
shadow_copy
shadow_copy(
model: tf.keras.Model
)
Creates shadow variables for the given model weights.
swap_weights
swap_weights()
Swap the average and moving weights.
This is a convenience method to allow one to evaluate the averaged weights
at test time. Loads the weights stored in self._average
into the model,
keeping a copy of the original model weights. Swapping twice will return
the original weights.
update_average
@tf.function
update_average( strategy )
variables
variables()
Returns variables of this Optimizer based on the order created.