Warning: This API is deprecated and will be removed in a future
version of TensorFlow after
the replacement is stable.
TensorScatterSub
Stay organized with collections
Save and categorize content based on your preferences.
Subtracts sparse `updates` from an existing tensor according to `indices`.
This operation creates a new tensor by subtracting sparse `updates` from the
passed in `tensor`.
This operation is very similar to `tf.scatter_nd_sub`, except that the updates
are subtracted from an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.
`indices` is an integer tensor containing indices into a new tensor of shape
`shape`. The last dimension of `indices` can be at most the rank of `shape`:
indices.shape[-1] <= shape.rank
The last dimension of `indices` corresponds to indices into elements
(if `indices.shape[-1] = shape.rank`) or slices
(if `indices.shape[-1] < shape.rank`) along dimension `indices.shape[-1]` of
`shape`. `updates` is a tensor with shape
indices.shape[:-1] + shape[indices.shape[-1]:]
The simplest form of tensor_scatter_sub is to subtract individual elements
from a tensor by index. For example, say we want to insert 4 scattered elements
in a rank-1 tensor with 8 elements.
In Python, this scatter subtract operation would look like this:
indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
tensor = tf.ones([8], dtype=tf.int32)
updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)
print(updated)
The resulting tensor would look like this:
[1, -10, 1, -9, -8, 1, 1, -11]
We can also, insert entire slices of a higher rank tensor all at once. For
example, if we wanted to insert two slices in the first dimension of a
rank-3 tensor with two matrices of new values.
In Python, this scatter add operation would look like this:
indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]],
[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]]])
tensor = tf.ones([4, 4, 4],dtype=tf.int32)
updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)
print(updated)
The resulting tensor would look like this:
[[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
[[-4, -4, -4, -4], [-5, -5, -5, -5], [-6, -6, -6, -6], [-7, -7, -7, -7]],
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]
Note that on CPU, if an out of bound index is found, an error is returned.
On GPU, if an out of bound index is found, the index is ignored.
Public Methods
Output<T>
|
asOutput()
Returns the symbolic handle of a tensor.
|
static
<T, U extends Number>
TensorScatterSub<T>
|
|
Output<T>
|
output()
A new tensor copied from tensor and updates subtracted according to the indices.
|
Inherited Methods
From class
java.lang.Object
boolean
|
equals(Object arg0)
|
final
Class<?>
|
getClass()
|
int
|
hashCode()
|
final
void
|
notify()
|
final
void
|
notifyAll()
|
String
|
toString()
|
final
void
|
wait(long arg0, int arg1)
|
final
void
|
wait(long arg0)
|
final
void
|
wait()
|
Public Methods
public
Output<T>
asOutput
()
Returns the symbolic handle of a tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is
used to obtain a symbolic handle that represents the computation of the input.
Factory method to create a class wrapping a new TensorScatterSub operation.
Parameters
scope |
current scope |
tensor |
Tensor to copy/update. |
indices |
Index tensor. |
updates |
Updates to scatter into output. |
Returns
- a new instance of TensorScatterSub
public
Output<T>
output
()
A new tensor copied from tensor and updates subtracted according to the indices.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-02-12 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-02-12 UTC."],[],[],null,["# TensorScatterSub\n\npublic final class **TensorScatterSub** \nSubtracts sparse \\`updates\\` from an existing tensor according to \\`indices\\`.\n\n\nThis operation creates a new tensor by subtracting sparse \\`updates\\` from the\npassed in \\`tensor\\`.\nThis operation is very similar to \\`tf.scatter_nd_sub\\`, except that the updates\nare subtracted from an existing tensor (as opposed to a variable). If the memory\nfor the existing tensor cannot be re-used, a copy is made and updated.\n\n\n\\`indices\\` is an integer tensor containing indices into a new tensor of shape\n\\`shape\\`. The last dimension of \\`indices\\` can be at most the rank of \\`shape\\`:\n\n\nindices.shape\\[-1\\] \\\u003c= shape.rank\n\n\nThe last dimension of \\`indices\\` corresponds to indices into elements\n(if \\`indices.shape\\[-1\\] = shape.rank\\`) or slices\n(if \\`indices.shape\\[-1\\] \\\u003c shape.rank\\`) along dimension \\`indices.shape\\[-1\\]\\` of\n\\`shape\\`. \\`updates\\` is a tensor with shape\n\n\nindices.shape\\[:-1\\] + shape\\[indices.shape\\[-1\\]:\\]\n\n\nThe simplest form of tensor_scatter_sub is to subtract individual elements\nfrom a tensor by index. For example, say we want to insert 4 scattered elements\nin a rank-1 tensor with 8 elements.\n\n\nIn Python, this scatter subtract operation would look like this: \n\n indices = tf.constant([[4], [3], [1], [7]])\n updates = tf.constant([9, 10, 11, 12])\n tensor = tf.ones([8], dtype=tf.int32)\n updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)\n print(updated)\n \nThe resulting tensor would look like this:\n\n\n\\[1, -10, 1, -9, -8, 1, 1, -11\\]\n\n\nWe can also, insert entire slices of a higher rank tensor all at once. For\nexample, if we wanted to insert two slices in the first dimension of a\nrank-3 tensor with two matrices of new values.\n\n\nIn Python, this scatter add operation would look like this: \n\n indices = tf.constant([[0], [2]])\n updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],\n [7, 7, 7, 7], [8, 8, 8, 8]],\n [[5, 5, 5, 5], [6, 6, 6, 6],\n [7, 7, 7, 7], [8, 8, 8, 8]]])\n tensor = tf.ones([4, 4, 4],dtype=tf.int32)\n updated = tf.tensor_scatter_nd_sub(tensor, indices, updates)\n print(updated)\n \nThe resulting tensor would look like this:\n\n\n\\[\\[\\[-4, -4, -4, -4\\], \\[-5, -5, -5, -5\\], \\[-6, -6, -6, -6\\], \\[-7, -7, -7, -7\\]\\],\n\\[\\[1, 1, 1, 1\\], \\[1, 1, 1, 1\\], \\[1, 1, 1, 1\\], \\[1, 1, 1, 1\\]\\],\n\\[\\[-4, -4, -4, -4\\], \\[-5, -5, -5, -5\\], \\[-6, -6, -6, -6\\], \\[-7, -7, -7, -7\\]\\],\n\\[\\[1, 1, 1, 1\\], \\[1, 1, 1, 1\\], \\[1, 1, 1, 1\\], \\[1, 1, 1, 1\\]\\]\\]\n\n\nNote that on CPU, if an out of bound index is found, an error is returned.\nOn GPU, if an out of bound index is found, the index is ignored.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Public Methods\n\n|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Output](/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [asOutput](/api_docs/java/org/tensorflow/op/core/TensorScatterSub#asOutput())() Returns the symbolic handle of a tensor. |\n| static \\\u003cT, U extends Number\\\u003e [TensorScatterSub](/api_docs/java/org/tensorflow/op/core/TensorScatterSub)\\\u003cT\\\u003e | [create](/api_docs/java/org/tensorflow/op/core/TensorScatterSub#create(org.tensorflow.op.Scope,%20org.tensorflow.Operand\u003cT\u003e,%20org.tensorflow.Operand\u003cU\u003e,%20org.tensorflow.Operand\u003cT\u003e))([Scope](/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e tensor, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cU\\\u003e indices, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e updates) Factory method to create a class wrapping a new TensorScatterSub operation. |\n| [Output](/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [output](/api_docs/java/org/tensorflow/op/core/TensorScatterSub#output())() A new tensor copied from tensor and updates subtracted according to the indices. |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.PrimitiveOp](/api_docs/java/org/tensorflow/op/PrimitiveOp) \n\n|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/api_docs/java/org/tensorflow/op/PrimitiveOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/api_docs/java/org/tensorflow/op/PrimitiveOp#hashCode())() |\n| [Operation](/api_docs/java/org/tensorflow/Operation) | [op](/api_docs/java/org/tensorflow/op/PrimitiveOp#op())() Returns the underlying [Operation](/api_docs/java/org/tensorflow/Operation) |\n| final String | [toString](/api_docs/java/org/tensorflow/op/PrimitiveOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.Operand](/api_docs/java/org/tensorflow/Operand) \n\n|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| abstract [Output](/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [asOutput](/api_docs/java/org/tensorflow/Operand#asOutput())() Returns the symbolic handle of a tensor. |\n\nPublic Methods\n--------------\n\n#### public [Output](/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**asOutput**\n()\n\nReturns the symbolic handle of a tensor.\n\nInputs to TensorFlow operations are outputs of another TensorFlow operation. This method is\nused to obtain a symbolic handle that represents the computation of the input.\n\n\u003cbr /\u003e\n\n#### public static [TensorScatterSub](/api_docs/java/org/tensorflow/op/core/TensorScatterSub)\\\u003cT\\\u003e\n**create**\n([Scope](/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e tensor, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cU\\\u003e indices, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e updates)\n\nFactory method to create a class wrapping a new TensorScatterSub operation. \n\n##### Parameters\n\n| scope | current scope |\n| tensor | Tensor to copy/update. |\n| indices | Index tensor. |\n| updates | Updates to scatter into output. |\n|---------|---------------------------------|\n\n##### Returns\n\n- a new instance of TensorScatterSub \n\n#### public [Output](/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**output**\n()\n\nA new tensor copied from tensor and updates subtracted according to the indices."]]