Warning: This API is deprecated and will be removed in a future
version of TensorFlow after
the replacement is stable.
KmeansPlusPlusInitialization
Stay organized with collections
Save and categorize content based on your preferences.
Selects num_to_sample rows of input using the KMeans++ criterion.
Rows of points are assumed to be input points. One row is selected at random.
Subsequent rows are sampled with probability proportional to the squared L2
distance from the nearest row selected thus far till num_to_sample rows have
been sampled.
Inherited Methods
From class
java.lang.Object
boolean
|
equals(Object arg0)
|
final
Class<?>
|
getClass()
|
int
|
hashCode()
|
final
void
|
notify()
|
final
void
|
notifyAll()
|
String
|
toString()
|
final
void
|
wait(long arg0, int arg1)
|
final
void
|
wait(long arg0)
|
final
void
|
wait()
|
Public Methods
public
Output<Float>
asOutput
()
Returns the symbolic handle of a tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is
used to obtain a symbolic handle that represents the computation of the input.
Factory method to create a class wrapping a new KmeansPlusPlusInitialization operation.
Parameters
scope |
current scope |
points |
Matrix of shape (n, d). Rows are assumed to be input points. |
numToSample |
Scalar. The number of rows to sample. This value must not be larger than n. |
seed |
Scalar. Seed for initializing the random number generator. |
numRetriesPerSample |
Scalar. For each row that is sampled, this parameter
specifies the number of additional points to draw from the current
distribution before selecting the best. If a negative value is specified, a
heuristic is used to sample O(log(num_to_sample)) additional points. |
Returns
- a new instance of KmeansPlusPlusInitialization
public
Output<Float>
samples
()
Matrix of shape (num_to_sample, d). The sampled rows.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2022-02-12 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2022-02-12 UTC."],[],[],null,["# KmeansPlusPlusInitialization\n\npublic final class **KmeansPlusPlusInitialization** \nSelects num_to_sample rows of input using the KMeans++ criterion.\n\n\nRows of points are assumed to be input points. One row is selected at random.\nSubsequent rows are sampled with probability proportional to the squared L2\ndistance from the nearest row selected thus far till num_to_sample rows have\nbeen sampled.\n\n\u003cbr /\u003e\n\n### Public Methods\n\n|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Output](/api_docs/java/org/tensorflow/Output)\\\u003cFloat\\\u003e | [asOutput](/api_docs/java/org/tensorflow/op/core/KmeansPlusPlusInitialization#asOutput())() Returns the symbolic handle of a tensor. |\n| static [KmeansPlusPlusInitialization](/api_docs/java/org/tensorflow/op/core/KmeansPlusPlusInitialization) | [create](/api_docs/java/org/tensorflow/op/core/KmeansPlusPlusInitialization#create(org.tensorflow.op.Scope,%20org.tensorflow.Operand\u003cjava.lang.Float\u003e,%20org.tensorflow.Operand\u003cjava.lang.Long\u003e,%20org.tensorflow.Operand\u003cjava.lang.Long\u003e,%20org.tensorflow.Operand\u003cjava.lang.Long\u003e))([Scope](/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cFloat\\\u003e points, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cLong\\\u003e numToSample, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cLong\\\u003e seed, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cLong\\\u003e numRetriesPerSample) Factory method to create a class wrapping a new KmeansPlusPlusInitialization operation. |\n| [Output](/api_docs/java/org/tensorflow/Output)\\\u003cFloat\\\u003e | [samples](/api_docs/java/org/tensorflow/op/core/KmeansPlusPlusInitialization#samples())() Matrix of shape (num_to_sample, d). |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.PrimitiveOp](/api_docs/java/org/tensorflow/op/PrimitiveOp) \n\n|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/api_docs/java/org/tensorflow/op/PrimitiveOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/api_docs/java/org/tensorflow/op/PrimitiveOp#hashCode())() |\n| [Operation](/api_docs/java/org/tensorflow/Operation) | [op](/api_docs/java/org/tensorflow/op/PrimitiveOp#op())() Returns the underlying [Operation](/api_docs/java/org/tensorflow/Operation) |\n| final String | [toString](/api_docs/java/org/tensorflow/op/PrimitiveOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.Operand](/api_docs/java/org/tensorflow/Operand) \n\n|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| abstract [Output](/api_docs/java/org/tensorflow/Output)\\\u003cFloat\\\u003e | [asOutput](/api_docs/java/org/tensorflow/Operand#asOutput())() Returns the symbolic handle of a tensor. |\n\nPublic Methods\n--------------\n\n#### public [Output](/api_docs/java/org/tensorflow/Output)\\\u003cFloat\\\u003e\n**asOutput**\n()\n\nReturns the symbolic handle of a tensor.\n\nInputs to TensorFlow operations are outputs of another TensorFlow operation. This method is\nused to obtain a symbolic handle that represents the computation of the input.\n\n\u003cbr /\u003e\n\n#### public static [KmeansPlusPlusInitialization](/api_docs/java/org/tensorflow/op/core/KmeansPlusPlusInitialization)\n**create**\n([Scope](/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cFloat\\\u003e points, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cLong\\\u003e numToSample, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cLong\\\u003e seed, [Operand](/api_docs/java/org/tensorflow/Operand)\\\u003cLong\\\u003e numRetriesPerSample)\n\nFactory method to create a class wrapping a new KmeansPlusPlusInitialization operation. \n\n##### Parameters\n\n| scope | current scope |\n| points | Matrix of shape (n, d). Rows are assumed to be input points. |\n| numToSample | Scalar. The number of rows to sample. This value must not be larger than n. |\n| seed | Scalar. Seed for initializing the random number generator. |\n| numRetriesPerSample | Scalar. For each row that is sampled, this parameter specifies the number of additional points to draw from the current distribution before selecting the best. If a negative value is specified, a heuristic is used to sample O(log(num_to_sample)) additional points. |\n|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of KmeansPlusPlusInitialization \n\n#### public [Output](/api_docs/java/org/tensorflow/Output)\\\u003cFloat\\\u003e\n**samples**\n()\n\nMatrix of shape (num_to_sample, d). The sampled rows."]]