Get the global step tensor.
tf.compat.v1.train.get_global_step(
graph=None
)
Migrate to TF2
With the deprecation of global graphs, TF no longer tracks variables in
collections. In other words, there are no global variables in TF2. Thus, the
global step functions have been removed (get_or_create_global_step
,
create_global_step
, get_global_step
) . You have two options for migrating:
- Create a Keras optimizer, which generates an
iterations
variable. This variable is automatically incremented when callingapply_gradients
. - Manually create and increment a
tf.Variable
.
Below is an example of migrating away from using a global step to using a Keras optimizer:
Define a dummy model and loss:
def compute_loss(x):
v = tf.Variable(3.0)
y = x * v
loss = x * 5 - x * v
return loss, [v]
Before migrating:
g = tf.Graph()
with g.as_default():
x = tf.compat.v1.placeholder(tf.float32, [])
loss, var_list = compute_loss(x)
global_step = tf.compat.v1.train.get_or_create_global_step()
global_init = tf.compat.v1.global_variables_initializer()
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1)
train_op = optimizer.minimize(loss, global_step, var_list)
sess = tf.compat.v1.Session(graph=g)
sess.run(global_init)
print("before training:", sess.run(global_step))
before training: 0
sess.run(train_op, feed_dict={x: 3})
print("after training:", sess.run(global_step))
after training: 1
Using get_global_step
:
with g.as_default():
print(sess.run(tf.compat.v1.train.get_global_step()))
1
Migrating to a Keras optimizer:
optimizer = tf.keras.optimizers.SGD(.01)
print("before training:", optimizer.iterations.numpy())
before training: 0
with tf.GradientTape() as tape:
loss, var_list = compute_loss(3)
grads = tape.gradient(loss, var_list)
optimizer.apply_gradients(zip(grads, var_list))
print("after training:", optimizer.iterations.numpy())
after training: 1
Description
The global step tensor must be an integer variable. We first try to find it
in the collection GLOBAL_STEP
, or by name global_step:0
.
Returns | |
---|---|
The global step variable, or None if none was found.
|