View source on GitHub |
Initializer that generates tensors without scaling variance.
Inherits From: Initializer
tf.compat.v1.uniform_unit_scaling_initializer(
factor=1.0, seed=None, dtype=tf.dtypes.float32
)
When initializing a deep network, it is in principle advantageous to keep
the scale of the input variance constant, so it does not explode or diminish
by reaching the final layer. If the input is x
and the operation x * W
,
and we want to initialize W
uniformly at random, we need to pick W
from
[-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]
to keep the scale intact, where dim = W.shape[0]
(the size of the input).
A similar calculation for convolutional networks gives an analogous result
with dim
equal to the product of the first 3 dimensions. When
nonlinearities are present, we need to multiply this by a constant factor
.
See (Sussillo et al., 2014) for deeper motivation, experiments
and the calculation of constants. In section 2.3 there, the constants were
numerically computed: for a linear layer it's 1.0, relu: ~1.43, tanh: ~1.15.
Args | |
---|---|
factor
|
Float. A multiplicative factor by which the values will be scaled. |
seed
|
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
|
dtype
|
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
|
References:
Methods
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config
|
A Python dictionary. It will typically be the output of
get_config .
|
Returns | |
---|---|
An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns | |
---|---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape
|
Shape of the tensor. |
dtype
|
Optional dtype of the tensor. If not provided use the initializer dtype. |
partition_info
|
Optional information about the possible partitioning of a tensor. |