TensorFlow मॉडल बनाने, सहेजने, लोड करने और निष्पादित करने के लिए कक्षाओं को परिभाषित करता है।
चेतावनी : एपीआई वर्तमान में प्रयोगात्मक है और TensorFlow API स्थिरता गारंटी द्वारा कवर नहीं किया गया है। इंस्टॉलेशन निर्देशों के लिए README.md देखें।
लेबलइमेज उदाहरण पूर्व-प्रशिक्षित इंसेप्शन आर्किटेक्चर कनवल्शनल न्यूरल नेटवर्क का उपयोग करके छवियों को वर्गीकृत करने के लिए इस एपीआई के उपयोग को दर्शाता है। यह दर्शाता है:
- ग्राफ़ निर्माण: JPEG छवि को डिकोड करने, आकार बदलने और सामान्य करने के लिए ग्राफ़ बनाने के लिए ऑपरेशनबिल्डर क्लास का उपयोग करना।
- मॉडल लोडिंग: पूर्व-प्रशिक्षित इंसेप्शन मॉडल को लोड करने के लिए Graph.importGraphDef() का उपयोग करना।
- ग्राफ़ निष्पादन: ग्राफ़ निष्पादित करने और किसी छवि के लिए सर्वोत्तम लेबल खोजने के लिए एक सत्र का उपयोग करना।
इंटरफेस
निष्पादनपर्यावरण | TensorFlow Operation बनाने और निष्पादित करने के लिए एक वातावरण को परिभाषित करता है। |
ग्राफ.जबकि सबग्राफबिल्डर | एक अमूर्त वर्ग को इंस्टेंट करने के लिए उपयोग किया जाता है जो थोड़ी देर के लूप के लिए एक सशर्त या बॉडी सबग्राफ बनाने के लिए बिल्डसबग्राफ विधि को ओवरराइड करता है। |
ऑपरेंड <टी> | TensorFlow ऑपरेशन के ऑपरेंड द्वारा कार्यान्वित इंटरफ़ेस। |
संचालन | टेन्सर्स पर गणना करता है। |
ऑपरेशनबिल्डर | Operation के लिए एक बिल्डर। |
कक्षाओं
उत्सुक सत्र | TensorFlow संचालन को उत्सुकता से निष्पादित करने के लिए एक वातावरण। |
उत्सुक सत्र.विकल्प | |
ग्राफ़ | TensorFlow गणना का प्रतिनिधित्व करने वाला डेटा प्रवाह ग्राफ़। |
ग्राफ़ऑपरेशन | Graph में एक नोड के रूप में जोड़े गए Operation के लिए कार्यान्वयन। |
ग्राफ़ऑपरेशनबिल्डर | Graph में GraphOperation s जोड़ने के लिए एक OperationBuilder । |
आउटपुट <T> | एक Operation द्वारा निर्मित टेंसर का एक प्रतीकात्मक हैंडल। |
सेव्डमॉडलबंडल | SaveModelBundle स्टोरेज से लोड किए गए मॉडल का प्रतिनिधित्व करता है। |
सेव्डमॉडलबंडल.लोडर | सेव्डमॉडल लोड करने के विकल्प। |
सर्वर | वितरित प्रशिक्षण में उपयोग के लिए एक इन-प्रोसेस TensorFlow सर्वर। |
सत्र | Graph निष्पादन के लिए ड्राइवर. |
सत्र.चलाएँ | सत्र निष्पादित करते समय प्राप्त आउटपुट टेंसर और मेटाडेटा। |
सत्र.धावक | Operation चलाएं और Tensors मूल्यांकन करें। |
आकार | किसी ऑपरेशन द्वारा निर्मित टेंसर का संभवतः आंशिक रूप से ज्ञात आकार। |
टेंसर <टी> | एक स्थिर रूप से टाइप किया गया बहु-आयामी सरणी जिसके तत्व टी द्वारा वर्णित प्रकार के हैं। |
टेंसरफ़्लो | TensorFlow रनटाइम का वर्णन करने वाली स्थैतिक उपयोगिता विधियाँ। |
टेंसर | Tensor ऑब्जेक्ट बनाने के लिए टाइप-सुरक्षित फ़ैक्टरी विधियाँ। |
एनम्स
डेटा प्रकार | Tensor में तत्वों के प्रकार को एक एनम के रूप में दर्शाता है। |
उत्सुक सत्र.डिवाइसप्लेसमेंट नीति | यह नियंत्रित करता है कि जब हम किसी दिए गए डिवाइस पर कोई ऑपरेशन चलाने का प्रयास करते हैं तो कैसे कार्य करना है लेकिन कुछ इनपुट टेंसर उस डिवाइस पर नहीं हैं। |
उत्सुक सत्र.संसाधनक्लीनअपरणनीति | यह नियंत्रित करता है कि जब TensorFlow संसाधनों की आवश्यकता नहीं रह जाती है तो उन्हें कैसे साफ़ किया जाता है। |
अपवाद
टेंसरफ़्लो अपवाद | TensorFlow ग्राफ़ निष्पादित करते समय अनियंत्रित अपवाद फेंक दिया गया। |
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2024-11-08 (UTC) को अपडेट किया गया.
[[["समझने में आसान है","easyToUnderstand","thumb-up"],["मेरी समस्या हल हो गई","solvedMyProblem","thumb-up"],["अन्य","otherUp","thumb-up"]],[["वह जानकारी मौजूद नहीं है जो मुझे चाहिए","missingTheInformationINeed","thumb-down"],["बहुत मुश्किल है / बहुत सारे चरण हैं","tooComplicatedTooManySteps","thumb-down"],["पुराना","outOfDate","thumb-down"],["अनुवाद से जुड़ी समस्या","translationIssue","thumb-down"],["सैंपल / कोड से जुड़ी समस्या","samplesCodeIssue","thumb-down"],["अन्य","otherDown","thumb-down"]],["आखिरी बार 2024-11-08 (UTC) को अपडेट किया गया."],[],[]]