Module: tfl.lattice_lib
Stay organized with collections
Save and categorize content based on your preferences.
Implementation of algorithms required for Lattice layer.
Functions
assert_constraints(...)
: Asserts that weights satisfy constraints.
batch_outer_operation(...)
: Computes outer operation of last dimensions of each of given tensors.
compute_interpolation_weights(...)
: Computes weights for hypercube lattice interpolation.
default_init_params(...)
: Returns reasonable default parameters if not defined explicitly.
evaluate_with_hypercube_interpolation(...)
: Evaluates a lattice using hypercube interpolation.
evaluate_with_simplex_interpolation(...)
: Evaluates a lattice using simplex interpolation.
finalize_constraints(...)
: Approximately projects lattice weights to strictly satisfy all constraints.
laplacian_regularizer(...)
: Returns Laplacian regularization loss for Lattice
layer.
linear_initializer(...)
: Returns a lattice layer weight tensor that represents a linear function.
project_by_dykstra(...)
: Applies dykstra's projection algorithm for monotonicity/trust constraints.
random_monotonic_initializer(...)
: Returns a uniformly random sampled monotonic lattice layer weight tensor.
torsion_regularizer(...)
: Returns Torsion regularization loss for Lattice
layer.
verify_hyperparameters(...)
: Verifies that all given hyperparameters are consistent.
Other Members |
absolute_import
|
Instance of __future__._Feature
|
division
|
Instance of __future__._Feature
|
print_function
|
Instance of __future__._Feature
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-08-02 UTC."],[],[],null,["# Module: tfl.lattice_lib\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/lattice_lib.py) |\n\nImplementation of algorithms required for Lattice layer.\n\nFunctions\n---------\n\n[`assert_constraints(...)`](../tfl/lattice_lib/assert_constraints): Asserts that weights satisfy constraints.\n\n[`batch_outer_operation(...)`](../tfl/lattice_lib/batch_outer_operation): Computes outer operation of last dimensions of each of given tensors.\n\n[`compute_interpolation_weights(...)`](../tfl/lattice_lib/compute_interpolation_weights): Computes weights for hypercube lattice interpolation.\n\n[`default_init_params(...)`](../tfl/lattice_lib/default_init_params): Returns reasonable default parameters if not defined explicitly.\n\n[`evaluate_with_hypercube_interpolation(...)`](../tfl/lattice_lib/evaluate_with_hypercube_interpolation): Evaluates a lattice using hypercube interpolation.\n\n[`evaluate_with_simplex_interpolation(...)`](../tfl/lattice_lib/evaluate_with_simplex_interpolation): Evaluates a lattice using simplex interpolation.\n\n[`finalize_constraints(...)`](../tfl/lattice_lib/finalize_constraints): Approximately projects lattice weights to strictly satisfy all constraints.\n\n[`laplacian_regularizer(...)`](../tfl/lattice_lib/laplacian_regularizer): Returns Laplacian regularization loss for `Lattice` layer.\n\n[`linear_initializer(...)`](../tfl/lattice_lib/linear_initializer): Returns a lattice layer weight tensor that represents a linear function.\n\n[`project_by_dykstra(...)`](../tfl/lattice_lib/project_by_dykstra): Applies dykstra's projection algorithm for monotonicity/trust constraints.\n\n[`random_monotonic_initializer(...)`](../tfl/lattice_lib/random_monotonic_initializer): Returns a uniformly random sampled monotonic lattice layer weight tensor.\n\n[`torsion_regularizer(...)`](../tfl/lattice_lib/torsion_regularizer): Returns Torsion regularization loss for `Lattice` layer.\n\n[`verify_hyperparameters(...)`](../tfl/lattice_lib/verify_hyperparameters): Verifies that all given hyperparameters are consistent.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Other Members ------------- ||\n|-----------------|-----------------------------------|\n| absolute_import | Instance of `__future__._Feature` |\n| division | Instance of `__future__._Feature` |\n| print_function | Instance of `__future__._Feature` |\n\n\u003cbr /\u003e"]]