Module: tfl.configs
Stay organized with collections
Save and categorize content based on your preferences.
TFL model configuration library for canned estimators.
To construct a TFL canned estimator, construct a model configuration and pass
it to the canned estimator constructor:
feature_columns = ...
model_config = tfl.configs.CalibratedLatticeConfig(...)
feature_analysis_input_fn = create_input_fn(num_epochs=1, ...)
train_input_fn = create_input_fn(num_epochs=100, ...)
estimator = tfl.estimators.CannedClassifier(
feature_columns=feature_columns,
model_config=model_config,
feature_analysis_input_fn=feature_analysis_input_fn)
estimator.train(input_fn=train_input_fn)
Supported models are:
Calibrated linear model: Constructed using
tfl.configs.CalibratedLinearConfig
.
A calibrated linear model that applies piecewise-linear and categorical
calibration on the input feature, followed by a linear combination and an
optional output piecewise-linear calibration. When using output calibration
or when output bounds are specified, the linear layer will apply weighted
averaging on calibrated inputs.
Calibrated lattice model: Constructed using
tfl.configs.CalibratedLatticeConfig
.
A calibrated lattice model applies piecewise-linear and categorical
calibration on the input feature, followed by a lattice model and an
optional output piecewise-linear calibration.
Calibrated lattice ensemble model: Constructed using
tfl.configs.CalibratedLatticeEnsembleConfig
.
A calibrated lattice ensemble model applies piecewise-linear and categorical
calibration on the input feature, followed by an ensemble of lattice models
and an optional output piecewise-linear calibration.
Feature calibration and per-feature configurations are set using
tfl.configs.FeatureConfig
. Feature configurations include monotonicity
constraints, per-feature regularization (see tfl.configs.RegularizerConfig
),
and lattice sizes for lattice models.
Classes
class AggregateFunctionConfig
: Config for aggregate function learning model.
class CalibratedLatticeConfig
: Config for calibrated lattice model.
class CalibratedLatticeEnsembleConfig
: Config for calibrated lattice model.
class CalibratedLinearConfig
: Config for calibrated lattice model.
class DominanceConfig
: Configuration for dominance constraints in TFL canned estimators.
class FeatureConfig
: Per-feature configuration for TFL canned estimators.
class RegularizerConfig
: Regularizer configuration for TFL canned estimators.
class TrustConfig
: Configuration for feature trusts in TFL canned estimators.
Functions
apply_updates(...)
: Updates a model config with the given set of (key, values) updates.
Other Members |
absolute_import
|
Instance of __future__._Feature
|
division
|
Instance of __future__._Feature
|
print_function
|
Instance of __future__._Feature
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-08-02 UTC."],[],[],null,["# Module: tfl.configs\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/configs.py) |\n\nTFL model configuration library for canned estimators.\n\nTo construct a TFL canned estimator, construct a model configuration and pass\nit to the canned estimator constructor: \n\n feature_columns = ...\n model_config = tfl.configs.CalibratedLatticeConfig(...)\n feature_analysis_input_fn = create_input_fn(num_epochs=1, ...)\n train_input_fn = create_input_fn(num_epochs=100, ...)\n estimator = tfl.estimators.CannedClassifier(\n feature_columns=feature_columns,\n model_config=model_config,\n feature_analysis_input_fn=feature_analysis_input_fn)\n estimator.train(input_fn=train_input_fn)\n\n#### Supported models are:\n\n- **Calibrated linear model** : Constructed using\n [`tfl.configs.CalibratedLinearConfig`](../tfl/configs/CalibratedLinearConfig).\n A calibrated linear model that applies piecewise-linear and categorical\n calibration on the input feature, followed by a linear combination and an\n optional output piecewise-linear calibration. When using output calibration\n or when output bounds are specified, the linear layer will apply weighted\n averaging on calibrated inputs.\n\n- **Calibrated lattice model** : Constructed using\n [`tfl.configs.CalibratedLatticeConfig`](../tfl/configs/CalibratedLatticeConfig).\n A calibrated lattice model applies piecewise-linear and categorical\n calibration on the input feature, followed by a lattice model and an\n optional output piecewise-linear calibration.\n\n- **Calibrated lattice ensemble model** : Constructed using\n [`tfl.configs.CalibratedLatticeEnsembleConfig`](../tfl/configs/CalibratedLatticeEnsembleConfig).\n A calibrated lattice ensemble model applies piecewise-linear and categorical\n calibration on the input feature, followed by an ensemble of lattice models\n and an optional output piecewise-linear calibration.\n\nFeature calibration and per-feature configurations are set using\n[`tfl.configs.FeatureConfig`](../tfl/configs/FeatureConfig). Feature configurations include monotonicity\nconstraints, per-feature regularization (see [`tfl.configs.RegularizerConfig`](../tfl/configs/RegularizerConfig)),\nand lattice sizes for lattice models.\n\nClasses\n-------\n\n[`class AggregateFunctionConfig`](../tfl/configs/AggregateFunctionConfig): Config for aggregate function learning model.\n\n[`class CalibratedLatticeConfig`](../tfl/configs/CalibratedLatticeConfig): Config for calibrated lattice model.\n\n[`class CalibratedLatticeEnsembleConfig`](../tfl/configs/CalibratedLatticeEnsembleConfig): Config for calibrated lattice model.\n\n[`class CalibratedLinearConfig`](../tfl/configs/CalibratedLinearConfig): Config for calibrated lattice model.\n\n[`class DominanceConfig`](../tfl/configs/DominanceConfig): Configuration for dominance constraints in TFL canned estimators.\n\n[`class FeatureConfig`](../tfl/configs/FeatureConfig): Per-feature configuration for TFL canned estimators.\n\n[`class RegularizerConfig`](../tfl/configs/RegularizerConfig): Regularizer configuration for TFL canned estimators.\n\n[`class TrustConfig`](../tfl/configs/TrustConfig): Configuration for feature trusts in TFL canned estimators.\n\nFunctions\n---------\n\n[`apply_updates(...)`](../tfl/configs/apply_updates): Updates a model config with the given set of (key, values) updates.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Other Members ------------- ||\n|-----------------|-----------------------------------|\n| absolute_import | Instance of `__future__._Feature` |\n| division | Instance of `__future__._Feature` |\n| print_function | Instance of `__future__._Feature` |\n\n\u003cbr /\u003e"]]