tff.learning.templates.build_functional_model_delta_client_work
Stay organized with collections
Save and categorize content based on your preferences.
Creates a ClientWorkProcess
for federated averaging.
tff.learning.templates.build_functional_model_delta_client_work(
*,
model: tff.learning.models.FunctionalModel
,
optimizer: tff.learning.optimizers.Optimizer
,
client_weighting: tff.learning.ClientWeighting
,
metrics_aggregator: Optional[tff.learning.metrics.MetricsAggregatorType
] = None,
loop_implementation: tff.learning.LoopImplementation
= tff.learning.LoopImplementation.DATASET_REDUCE
) -> tff.learning.templates.ClientWorkProcess
This differs from tff.learning.templates.build_model_delta_client_work
in
that it only accepts tff.learning.models.FunctionalModel
and
tff.learning.optimizers.Optimizer
type arguments, resulting in TensorFlow
graphs that do not contain tf.Variable
operations.
Returns |
A ClientWorkProcess .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-20 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-09-20 UTC."],[],[],null,["# tff.learning.templates.build_functional_model_delta_client_work\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/federated/blob/v0.87.0 Version 2.0, January 2004 Licensed under the Apache License, Version 2.0 (the) |\n\nCreates a `ClientWorkProcess` for federated averaging. \n\n tff.learning.templates.build_functional_model_delta_client_work(\n *,\n model: ../../../tff/learning/models/FunctionalModel,\n optimizer: ../../../tff/learning/optimizers/Optimizer,\n client_weighting: ../../../tff/learning/ClientWeighting,\n metrics_aggregator: Optional[../../../tff/learning/metrics/MetricsAggregatorType] = None,\n loop_implementation: ../../../tff/learning/LoopImplementation = ../../../tff/learning/LoopImplementation#DATASET_REDUCE\n ) -\u003e ../../../tff/learning/templates/ClientWorkProcess\n\nThis differs from [`tff.learning.templates.build_model_delta_client_work`](../../../tff/learning/templates/build_model_delta_client_work) in\nthat it only accepts [`tff.learning.models.FunctionalModel`](../../../tff/learning/models/FunctionalModel) and\n[`tff.learning.optimizers.Optimizer`](../../../tff/learning/optimizers/Optimizer) type arguments, resulting in TensorFlow\ngraphs that do not contain [`tf.Variable`](https://www.tensorflow.org/api_docs/python/tf/Variable) operations.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `model` | A [`tff.learning.models.FunctionalModel`](../../../tff/learning/models/FunctionalModel) to train. |\n| `optimizer` | A [`tff.learning.optimizers.Optimizer`](../../../tff/learning/optimizers/Optimizer) to use for local, on-client optimization. |\n| `client_weighting` | A [`tff.learning.ClientWeighting`](../../../tff/learning/ClientWeighting) value. |\n| `metrics_aggregator` | A function that takes in the metric finalizers (i.e., [`tff.learning.models.VariableModel.metric_finalizers()`](../../../tff/learning/models/VariableModel#metric_finalizers)) and returns a [`tff.Computation`](../../../tff/Computation) for aggregating the unfinalized metrics. If `None`, this is set to [`tff.learning.metrics.sum_then_finalize`](../../../tff/learning/metrics/sum_then_finalize). |\n| `loop_implementation` | Changes the implementation of the training loop generated. See [`tff.learning.LoopImplementation`](../../../tff/learning/LoopImplementation) for more details. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `ClientWorkProcess`. ||\n\n\u003cbr /\u003e"]]