tff.learning.metrics.create_default_secure_sum_quantization_ranges
Stay organized with collections
Save and categorize content based on your preferences.
Create a nested structure of quantization ranges for secure sum encoding.
tff.learning.metrics.create_default_secure_sum_quantization_ranges(
local_unfinalized_metrics_type: tff.types.StructWithPythonType
,
lower_bound: Union[int, float] = DEFAULT_FIXED_SECURE_LOWER_BOUND,
upper_bound: Union[int, float] = DEFAULT_FIXED_SECURE_UPPER_BOUND,
use_auto_tuned_bounds_for_float_values: Optional[bool] = True
) -> MetricValueRangeDict
Args |
local_unfinalized_metrics_type
|
The tff.Type structure to generate default
secure sum quantization ranges form. Must be a tff.Type tree containing
only tff.TensorType and tff.StructType . Each tff.TensorType must be
of floating point or integer dtype.
|
lower_bound
|
An optional integer or floating point lower bound for the
secure sum quantization range. Values smaller than this will be clipped to
this value. By default is 0 . If a float , any tff.TensorType in
local_unfinalized_metrics_type with an integer dtype will use
math.ceil(lower_bound) as a bound.
|
upper_bound
|
An optional integer or floating point upper bound for the
secure sum quantization range. Values larger than this will be clipped to
this value. By default is 2^20 - 1 (~1 million). If a float , any
tff.TensorType in local_unfinalized_metrics_type with an integer dtype
will use math.floor(lower_bound) as a bound.
|
use_auto_tuned_bounds_for_float_values
|
An optional boolean for specifying
whether to use auto-tuned bounds for float values. If True, a default
tff.templates.EstimationProcess is used for upper_bound , and the
lower_bound is None to allow tff.aggregators.SecureSumFactory to
determine the lower_bound .
|
Returns |
A nested structure matching the structure of
local_unfinalized_metrics_type where each tf.TensorType has been
replaced with a 2-tuple of lower bound and upper bound, where the tuple
can be (float , float ) or (None, tff.templates.EstimationProcess ) for
floating dtypes, and (int , int ) for integer dtypes.
|
Raises |
UnquantizableDTypeError
|
If A tff.TensorType in
local_unfinalized_metrics_type has a non-float or non-integer dtype.
|
ValueError
|
If an integer dtype in local_unfinalized_metrics_type will
have a zero range (e.g. math.ceil(lower_bound) - math.floor(upper_bound)
< 1 ).
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-09-20 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-09-20 UTC."],[],[]]