tensorflow::
ops::
MirrorPad
#include <array_ops.h>
Pads a tensor with mirrored values.
Summary
This operation pads a
input
with mirrored values according to the
paddings
you specify.
paddings
is an integer tensor with shape
[n, 2]
, where n is the rank of
input
. For each dimension D of
input
,
paddings[D, 0]
indicates how many values to add before the contents of
input
in that dimension, and
paddings[D, 1]
indicates how many values to add after the contents of
input
in that dimension. Both
paddings[D, 0]
and
paddings[D, 1]
must be no greater than
input.dim_size(D)
(or
input.dim_size(D) - 1
) if
copy_border
is true (if false, respectively).
The padded size of each dimension D of the output is:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
For example:
# 't' is [[1, 2, 3], [4, 5, 6]]. # 'paddings' is [[1, 1]], [2, 2]]. # 'mode' is SYMMETRIC. # rank of 't' is 2. pad(t, paddings) ==> [[2, 1, 1, 2, 3, 3, 2] [2, 1, 1, 2, 3, 3, 2] [5, 4, 4, 5, 6, 6, 5] [5, 4, 4, 5, 6, 6, 5]]
Args:
- scope: A Scope object
- input: The input tensor to be padded.
-
paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of
input
. -
mode: Either
REFLECT
orSYMMETRIC
. In reflect mode the padded regions do not include the borders, while in symmetric mode the padded regions do include the borders. For example, ifinput
is[1, 2, 3]
andpaddings
is[0, 2]
, then the output is[1, 2, 3, 2, 1]
in reflect mode, and it is[1, 2, 3, 3, 2]
in symmetric mode.
Returns:
-
Output
: The padded tensor.
Constructors and Destructors |
|
---|---|
MirrorPad
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
input, ::
tensorflow::Input
paddings, StringPiece mode)
|
Public functions |
|
---|---|
node
() const
|
::tensorflow::Node *
|
operator::tensorflow::Input
() const
|
|
operator::tensorflow::Output
() const
|
|
Public attributes
Public functions
MirrorPad
MirrorPad( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input paddings, StringPiece mode )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const