tf.keras.layers.experimental.preprocessing.RandomHeight
Stay organized with collections
Save and categorize content based on your preferences.
Randomly vary the height of a batch of images during training.
Inherits From: Layer
tf.keras.layers.experimental.preprocessing.RandomHeight(
factor, interpolation='bilinear', seed=None, name=None, **kwargs
)
Adjusts the height of a batch of images by a random factor. The input
should be a 4-D tensor in the "channels_last" image data format.
By default, this layer is inactive during inference.
Arguments |
factor
|
A positive float (fraction of original height), or a tuple of size 2
representing lower and upper bound for resizing vertically. When
represented as a single float, this value is used for both the upper and
lower bound. For instance, factor=(0.2, 0.3) results in an output height
varying in the range [original + 20%, original + 30%] . factor=(-0.2,
0.3) results in an output height varying in the range [original - 20%,
original + 30%] . factor=0.2 results in an output height varying in the
range [original - 20%, original + 20%] .
|
interpolation
|
String, the interpolation method. Defaults to bilinear .
Supports bilinear , nearest , bicubic , area , lanczos3 , lanczos5 ,
gaussian , mitchellcubic
|
seed
|
Integer. Used to create a random seed.
|
name
|
A string, the name of the layer.
|
4D tensor with shape: (samples, height, width, channels)
(data_format='channels_last').
Output shape:
4D tensor with shape: (samples, random_height, width, channels)
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.experimental.preprocessing.RandomHeight\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/keras/layers/preprocessing/image_preprocessing.py#L1082-L1171) |\n\nRandomly vary the height of a batch of images during training.\n\nInherits From: [`Layer`](../../../../../tf/keras/layers/Layer)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.experimental.preprocessing.RandomHeight`](/api_docs/python/tf/keras/layers/experimental/preprocessing/RandomHeight)\n\n\u003cbr /\u003e\n\n tf.keras.layers.experimental.preprocessing.RandomHeight(\n factor, interpolation='bilinear', seed=None, name=None, **kwargs\n )\n\nAdjusts the height of a batch of images by a random factor. The input\nshould be a 4-D tensor in the \"channels_last\" image data format.\n\nBy default, this layer is inactive during inference.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `factor` | A positive float (fraction of original height), or a tuple of size 2 representing lower and upper bound for resizing vertically. When represented as a single float, this value is used for both the upper and lower bound. For instance, `factor=(0.2, 0.3)` results in an output height varying in the range `[original + 20%, original + 30%]`. `factor=(-0.2, 0.3)` results in an output height varying in the range `[original - 20%, original + 30%]`. `factor=0.2` results in an output height varying in the range `[original - 20%, original + 20%]`. |\n| `interpolation` | String, the interpolation method. Defaults to `bilinear`. Supports `bilinear`, `nearest`, `bicubic`, `area`, `lanczos3`, `lanczos5`, `gaussian`, `mitchellcubic` |\n| `seed` | Integer. Used to create a random seed. |\n| `name` | A string, the name of the layer. |\n\n\u003cbr /\u003e\n\n#### Input shape:\n\n4D tensor with shape: `(samples, height, width, channels)`\n(data_format='channels_last').\n\n#### Output shape:\n\n4D tensor with shape: `(samples, random_height, width, channels)`."]]