tensorflow:: ops:: Conv
#include <nn_ops.h>
Computes a N-D convolution given (N+1+batch_dims)-D input and (N+2)-D filter tensors. 
Summary
General function for computing a N-D convolution. It is required that 1 <= N <= 3.
Args:
- scope: A Scope object
 - input: Tensor of type T and shape 
batch_shape + spatial_shape + [in_channels]in the case thatchannels_last_format = trueor shapebatch_shape + [in_channels] + spatial_shapeifchannels_last_format = false. spatial_shape is N-dimensional withN=2orN=3. Also note thatbatch_shapeis dictated by the parameterbatch_dimsand defaults to 1. - filter: An 
(N+2)-DTensor with the same type asinputand shapespatial_filter_shape + [in_channels, out_channels], where spatial_filter_shape is N-dimensional withN=2orN=3. - strides: 1-D tensor of length 
N+2. The stride of the sliding window for each dimension ofinput. Must havestrides[0] = strides[N+1] = 1. - padding: The type of padding algorithm to use.
 
Optional attributes (see Attrs):
- explicit_paddings: If 
paddingis"EXPLICIT", the list of explicit padding amounts. For the ith dimension, the amount of padding inserted before and after the dimension isexplicit_paddings[2 * i]andexplicit_paddings[2 * i + 1], respectively. Ifpaddingis not"EXPLICIT",explicit_paddingsmust be empty. - data_format: Used to set the data format. By default 
CHANNELS_FIRST, usesNHWC (2D) / NDHWC (3D)or ifCHANNELS_LAST, usesNCHW (2D) / NCDHW (3D). - dilations: 1-D tensor of length 
N+2. The dilation factor for each dimension ofinput. If set tok > 1, there will bek-1skipped cells between each filter element on that dimension. The dimension order is determined by the value ofchannels_last_format, see above for details. Dilations in the batch and depth dimensions must be 1. - batch_dims: A positive integer specifying the number of batch dimensions for the input tensor. Should be less than the rank of the input tensor.
 - groups: A positive integer specifying the number of groups in which the input is split along the channel axis. Each group is convolved separately with 
filters / groupsfilters. The output is the concatenation of all the groups results along the channel axis. Input channels and filters must both be divisible by groups. 
Returns:
Output: A (N+1+batch_dims)-D tensor. The dimension order is determined by the value ofchannels_last_format, see below for details.
Constructors and Destructors | 
|
|---|---|
Conv(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding)
 | 
|
Conv(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv::Attrs & attrs)
 | 
Public attributes | 
|
|---|---|
operation
 | 
|
output
 | 
|
Public functions | 
|
|---|---|
node() const 
 | 
::tensorflow::Node *
 | 
operator::tensorflow::Input() const 
 | 
 | 
operator::tensorflow::Output() const 
 | 
 | 
Public static functions | 
|
|---|---|
BatchDims(int64 x)
 | 
|
DataFormat(StringPiece x)
 | 
|
Dilations(const gtl::ArraySlice< int > & x)
 | 
|
ExplicitPaddings(const gtl::ArraySlice< int > & x)
 | 
|
Groups(int64 x)
 | 
|
Structs | 
|
|---|---|
| 
tensorflow:: | 
 Optional attribute setters for Conv.  | 
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
Conv
Conv( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding )
Conv
Conv( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input filter, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
BatchDims
Attrs BatchDims( int64 x )
DataFormat
Attrs DataFormat( StringPiece x )
Dilations
Attrs Dilations( const gtl::ArraySlice< int > & x )
ExplicitPaddings
Attrs ExplicitPaddings( const gtl::ArraySlice< int > & x )
Groups
Attrs Groups( int64 x )