tensorflow:: ops:: ApplyGradientDescent
#include <training_ops.h>
Update '*var' by subtracting 'alpha' * 'delta' from it.
Summary
Args:
- scope: A Scope object
 - var: Should be from a Variable().
 - alpha: Scaling factor. Must be a scalar.
 - delta: The change.
 
Optional attributes (see Attrs):
- use_locking: If 
True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. 
Returns:
Output: Same as "var".
Constructors and Destructors | 
|
|---|---|
ApplyGradientDescent(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta)
 | 
|
ApplyGradientDescent(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta, const ApplyGradientDescent::Attrs & attrs)
 | 
Public attributes | 
|
|---|---|
operation
 | 
|
out
 | 
|
Public functions | 
|
|---|---|
node() const 
 | 
::tensorflow::Node *
 | 
operator::tensorflow::Input() const 
 | 
 | 
operator::tensorflow::Output() const 
 | 
 | 
Public static functions | 
|
|---|---|
UseLocking(bool x)
 | 
|
Structs | 
|
|---|---|
| 
tensorflow:: | 
 Optional attribute setters for ApplyGradientDescent.  | 
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
ApplyGradientDescent
ApplyGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta )
ApplyGradientDescent
ApplyGradientDescent( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input alpha, ::tensorflow::Input delta, const ApplyGradientDescent::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UseLocking
Attrs UseLocking( bool x )